11.0 CONCLUSION AND RECOMMENDATIONS

The following recommendations were based on consideration of:

- Statutory requirements under the National Parks and Wildlife Act 1974
- The results of the background research, site survey and assessment
- The interests of Aboriginal stakeholder groups
- The likely impacts of the proposed development

It was found that:

- No Aboriginal sites and/or places were located within the study area.
- The study area has been subject to significant ground disturbance
- The study area was assessed as demonstrating low archaeological potential.

It is therefore recommended that:

- The proposed 'Shepherd Street Precinct' development is able to proceed without the need for further archaeological and/or Aboriginal heritage assessment.
- If the project design should change or if areas not surveyed are added to the scope of proposed works, further archaeological assessment would be required.
- If Aboriginal objects are uncovered during works an archaeologist, the TLALC and OEH must be notified. Further investigation and approvals may be required.
- If human remains are identified during archaeological test excavation or during any stage of the proposed works, work should cease, the site should be secured and the NSW Police and the OEH should be notified. Further investigation and approvals may be required.
- A final copy of this report (with updated study area and proposed design) should be forwarded to TLALC for their records.

12.0 REFERENCES

ACS, ACS Environmental Pty Ltd. 2015a. Riparian Issues, Assessment & Management at No. 20 Shepherd Street, Liverpool. Report to Coronation Property Co. Pty Ltd.

ACS, ACS Environmental Pty Ltd. 2015b. Flora & Fauna Survey and Biodiversity Assessment at No. 28 Shepherd Street, Liverpool. Report to Coronation Property Co. Pty Ltd.

AHMS, 2015. SIMTA Intermodal Terminal Facility – Stage 1: Aboriginal Heritage Impact Assessment, Report to Hyder Consulting Pty Ltd.

Artefact, 2011. Light Horse Park, Liverpool: Aboriginal Heritage Due Diligence Assessment and Statement of Heritage Impacts for non-Indigenous heritage for the proposed route of electricity feeder lines. Report to Endeavour Energy

Asset Geotechnical 2014. 20 Shepherd Street, Liverpool – Geotechnical investigation. Report to Coronation Property Co. Pty Ltd.

Asset Geotechnical 2015. 28 Shepherd Street, Liverpool – Geotechnical investigation. Report to Coronation Property Co. Pty Ltd.

Attenbrow, V. 2010. Sydney's Aboriginal Past: Investigating the archaeological and historical records. UNSW Press.

Butlin, N. 1983. Our original aggression: Aboriginal populations in southeastern Australia 1810-150. Melbourne. Cambridge University Press.

Central West Archaeological and Heritage Services Pty Ltd, 2002. An Aboriginal Archaeological Study of the Proposed Hoxton Park Partial Sewerage Transfer via Liverpool Submain, Report to Robynne Mills Archaeological and Heritage Services and Sydney Water.

City Plan Services. 2015a. Aboriginal Cultural Heritage Due Diligence Assessment: 20 Shepherd Street, Liverpool. Submitted to Liverpool City Council on Behalf of Coronation Property Group Pty Ltd.

City Plan Services. 2015b. Aboriginal Cultural Heritage Due Diligence Assessment: 28 Shepherd Street, Liverpool. Submitted to Liverpool City Council on Behalf of Coronation Property Group Pty Ltd.

Clark, N.R. & Jones, D.C. (eds). 1991. Penrith 1:100,00 Geological Sheet 9030 (New South Wales Geological Survey, Sydney).

HLRV, Historical Land Records Viewer. NSW Land and Property Information (LPI). Access from: http://images.maps.nsw.gov.au/pixel.htm

HV NSW, Heritage Council of New South Wales 2008. Collingwood. Retrieved from http://www.environment.nsw.gov.au/heritageapp/visit/ViewAttractionDetail.aspx?ID=5052418#

Kayandel Archaeological Services, 2010. The Georges River Estuary, Cultural Heritage Desktop Assessment, Report to SMEC and the Georges River Estuary Management Committee.

Karskens, G. 2010. The Colony: A History of Early Sydney. Allen and Unwin, Sydney.

Kohen, J.L. 1986. Prehistoric settlement in the western Cumberland Plain: Resources, environment and technology (Unpublished Phd thesis; Macquarie University).

Lennon, Tom 1932. Glass negative, quarter plate, Challenge Woollen Mills from Liverpool Camp, Sydney, New South Wales, Australia, 12 August 1932. Retrieved from http://www.powerhousemuseum.com/collection/database/?irn=395513&utm_source=api&utm_mediu m=api&utm_campaign=828f4d948d537cf

Navin Officer, June 2014, Moorebank Intermodal Terminal Aboriginal Heritage Assessment. Report prepared for Parsons Brinckerhoff.

NLA, National Library of Australia. 1856. Plan of the village of Collingwood, the property of J.H. Atkinson Esqre, being an extension of the town of Liverpool Mr Weaver Surveyor 42 Pitt Street. Sydney: Allan & Wigley Lith 23 Bridge St, [1856]. Accessed on 3 August 2015: http://nla.gov.au/nla.map-f638

OEH 2011. Sydney Basin – Subregions: Cumberland. Accessed on 3 August 2015: http://www.environment.nsw.gov.au/bioregions/SydneyBasin-Subregions.htm

OEH 2013. Collingwood Precinct: NSW Environment and Heritage. Accessed on 3 August 2015: http://www.environment.nsw.gov.au/aboriginalplaces/CollingwoodPrecinct.htm

Smith, Laurajane 1989. Liverpool Release Areas: archaeological site survey and planning study. Report to Liverpool City Council.

Tench, W. 1789, 1793. Sydney's first four years: being a reprint of a narrative of the expedition to Botany Bay and A complete account of the settlement at Port Jackson. Reprinted in 1961. (Angus and Robertson in association with RAHS).

Total Earth Care Pty Ltd, 2008. Aboriginal Cultural Heritage an Archaeological Assessment. Collingwood and Discovery Parks, Liverpool, Report to Liverpool City Council

White and McDonald 2010. Lithic Artefact Distribution in the Rouse Hill Development Area, Cumberland Plain, New South Wales. Australian Archaeology. Number 70. June 2010. Pages 29-38.

13.0 APPENDICES

13.1 Appendix 1: Tharawal Local Aboriginal Land Council Report

THARAWAL LOCAL ABORIGINAL LAND COUNCIL

220 West Parade, Couridjah NSW 2571

Alex Timms Artefact Level 4, Building B, 35 Saunders Street Pyrmont NSW 2009

RE: Shepherd Street, Liverpool NSW

Dear Alex,

Thank you for your invitation on this survey undertaken on Friday 21st August 2015. Nothing of Aboriginal Cultural Significance was located within this survey.

Tharawal LALC agrees with the Recommendations in the DRAFT report.

- The proposed 'Shepherd Street precinct' development is able to proceed without the need for further archaeological and/or Aboriginal heritage assessment.
- If the project design should change or if areas not surveyed are added to the scope of proposed works, further archaeological assessment would be required.
- If Aboriginal objects are uncovered during works and archaeologist, the TLALC and OEH must be notified. Further investigation and approvals may be required.
- If human remains are identified during archaeological test excavation or during any stage of the proposed works, work should cease, the site should be secured and the NSW Police, Tharawal LALC and OEH should be notified. Further investigation and approvals may be required

Yours Sincerely,

Abbi Whillock

Cultural Heritage Officer Tharawal Local Aboriginal Land Council M: 0448 002 042

PO Box 168 PICTON NSW 2571 Phone: 02 4681 0059 Fax: 02 4681 0866 ABN: 60 693 210 407 heritage@tharawal.com.au

Artefact Heritage ABN 73 144 973 526 Level 4, Building B 35 Saunders Street Pyrmont NSW 2009 Australia

+61 2 9518 8411 office@artefact.net.au www.artefact.net.au

INRORDS: GROUP

Planning Proposal, Shepherd Street, Liverpool Addendum Traffic Report

Revision B 10 June 2016

Prepared by:

Anne Coutts Director, InRoads Group BE Civil, MIEAust

InRoads Group www.inroadsgroup.com.au PO Box 596 | Potts Point NSW 1335 02 8035 3417 ABN: 25 608 559 897 ACN: 608 559 897

Contents

1.0	Introduction1
1.1	Background and Context
2.0	Amended Proposal – Intended Development Outcomes
3.0	Additional Traffic Analyses
3.1	Intersection Overview
3.2	Intersection Modelling
4.0	Woodbrook Road Underpass
5.0	Summary and Recommendations
5.1	Qualifications

Appendices

APPENDIX A

Concept Masterplan

APPENDIX B

Existing Traffic Volumes

APPENDIX C

RMS Forecast Traffic Volumes (Emme Strategic Traffic Assignment Model, 7-9 AM, 4-6 PM (2 hour peak volumes))

APPENDIX D

Forecast Future (2026 and 2036) Background Traffic Volumes

APPENDIX E

Routes from Shepherd Street Precinct to Key Destinations

APPENDIX F

Forecast Shepherd Street Precinct Traffic Generation

APPENDIX G

2026 and 2036 Design Traffic Volumes (Background + Development Traffic)

APPENDIX H

SIDRA Model Results - Speed Street / Bigge Street / Pirie Street intersection (Background Traffic only, Existing Intersection Configuration)

APPENDIX I

SIDRA Model Results - Speed Street / Bigge Street / Pirie Street intersection (Background Traffic only, Upgraded Intersection Configuration)

APPENDIX J

SIDRA Model Results - Speed Street / Bigge Street / Pirie Street intersection (With Development Traffic)

APPENDIX K

SIDRA Model Results - Newbridge Road / Speed Street intersection (Background Traffic only, Existing Intersection Configuration)

APPENDIX L

SIDRA Model Results - Newbridge Road / Speed Street intersection (Background Traffic only, Upgraded Intersection Configuration)

APPENDIX M

SIDRA Model Results - Newbridge Road / Speed Street intersection (With Development Traffic, Upgraded Intersection Configuration)

APPENDIX N

SIDRA Model Results - Terminus Street / Pirie Street intersection (Background Traffic only, Existing Intersection Configuration)

APPENDIX O

SIDRA Model Results - Terminus Street / Pirie Street intersection (With Development Traffic, Existing Intersection Configuration)

APPENDIX P

Liverpool City Council Concept Plan - Woodbrook Road Underpass

InRoads Group has prepared this report solely for the benefit and use of its client. This report takes into account the particular instructions and requirements of the client. In preparing this report we assume that all information and documents provided to us by the client or its consultants were complete, accurate and current. InRoads Group will not be liable for any conclusion drawn resulting from omission or lack of full disclosure by the client or its consultants.

This report may not be relied upon by a third party. InRoads Group does not and shall not assume any responsibility or liability whatsoever to any third party arising from the use, reliance upon, or any decision made regarding the contents of this report.

© InRoads Group

1.0 Introduction

InRoads Group was engaged to undertake a Traffic Impact Assessment investigating the impacts of rezoning seven adjacent properties on Shepherd Street in Liverpool. The subject properties include all of those on the eastern side of Shepherd Street, south of Atkinson Street (i.e. 20, 26, 28, 32-24, and 31-33 Shepherd Street). These properties have a combined area of approximately 31,000m².

Whilst already zoned R4 high-density residential, an increase in the permitted height and floor space ratio is sought to increase the potential density of development on the subject sites from 787 apartments (under the current planning controls) to 1,201 apartments on the eastern side of Shepherd Street.

An overall Masterplan has been developed which assumes the redevelopment of all land parcels on Shepherd Street, i.e. also including the properties on the western side, i.e. 19, 21, 25, 27, 29 Shepherd Street (see **Figure 1.0** below). An overall yield of approximately 1,500 residential apartments is anticipated for all properties on Shepherd Street (east and west) under this Masterplan, compared with 1,085 apartments under the existing planning controls. The proposed yield has been reduced from 1,774 apartments under the previous proposal.

Whilst this Planning Proposal relates to the rezoning of the properties on the eastern side of Shepherd Street only (i.e. 20, 26, 28, 32-24, and 31-33 Shepherd Street), the traffic investigations undertaken consider the impact of the redevelopment of all properties on Shepherd Street, as requested by Council.

This report is an Addendum to the Traffic Report prepared by InRoads Group (dated 10 March 2016) which accompanied the original Planning Proposal, and therefore should be read in conjunction with that report. Considering the amended (reduced yield) scheme, this report provides the results of additional analyses and investigations as requested by Council, and suggests an approach towards considering the cumulative impact of the proposed development in the context of the significant growth and development anticipated in the Liverpool City Centre Precinct. This is discussed further in the following section.

Figure 1.0: Subject Land Parcels (Masterplan Area)

1.1 Background and Context

The original Planning Proposal sought an increase in the permitted height and floor space ratio to increase the potential density of development on the subject sites from 787 apartments (under the current planning controls) to 1,475 apartments on the eastern side of Shepherd Street. The current Planning Proposal is for a reduced yield scheme of 1,201 apartments. **Table 1.1** below summarises the indicative Floor Space Ratios and apartments yields under the existing controls, the original proposal, and the current (reduced yield) proposal.

Eastern	Precinct	Overall Precinct	
Floor Space Ratio	No. of Apartments	Floor Space Ratio	No. of Apartments
2.5 : 1	787	2.5 : 1	1,085
4.5:1	1,475	4.5 : 1	1,774
3.45 : 1	1,201	3.45 : 1	1,500
	Floor Space Ratio 2.5 : 1 4.5 : 1	2.5:1 787 4.5:1 1,475	Floor Space Ratio No. of Apartments Floor Space Ratio 2.5:1 787 2.5:1 4.5:1 1,475 4.5:1

Table 1.1: Indicative Yields

As previously discussed, this report is an Addendum to the Traffic Report prepared by InRoads Group (dated 10 March 2016) which accompanied the original Planning Proposal, and therefore should be read in conjunction with that report. It documents the results of additional traffic analyses / investigations requested by Council, based upon the reduced potential overall yield of 1,500 residential apartments.

Reference should also be made to the 'Strategic Integrated Transport Assessment' for the precinct undertaken by Smyth Consulting, which provides a strategic-level assessment of the transport opportunities and constraints affecting the precinct, and identifies a set of initiatives that can deliver appropriate levels of access while minimising impacts upon the traffic and transport network.

It is acknowledged that Council has recently requested that transport network modelling (both strategic modelling and local microsimulation modelling) be undertaken by the Applicant, to assess the cumulative impact of development in Liverpool (i.e. of the Shepherd Street precinct in addition to other substantial development proposed/approved in and around the Liverpool CBD).

However as discussed with Council, this modelling would be a significant exercise potentially taking many months to complete, and would require a detailed understanding of the planning and development proposals which have been submitted to Council, other land-use changes in the south-west growth centre and the Western Sydney Airport in particular, and local and State government planning for both the road and the public transport system.

Furthermore, it is important to note that the proposal is largely consistent with the current high density zoning of the precinct in terms of overall traffic impact. The proposed apartment yield is expected to generate only an additional approximately 100 vehicles per hour in the peak periods (compared with the apartment yield achievable under the current planning controls), which, when distributed across various arrival and departure routes, is not considered to be significant from a traffic planning perspective.

Finally, it is noted that Council is in the process of engaging a consultant to undertake this substantial modelling exercise for the broader Liverpool City Centre Precinct (RFQ PQ2561), given that Council has submitted a planning proposal to the NSW Department of Planning and Environment to amend the Liverpool Local Environmental Plan 2008 to permit B4 mixed-use developments in the existing B3 zoning in the city centre, which is estimated to result in an additional 7,500 residential dwellings in this area.

However as discussed with Council, the Applicant proposes to fund a 'variation' to the modelling to be undertaken by Council's consultant, to assess the impact of the Planning Proposal for the Shepherd Street precinct upon the broader road network at the 2026 and 2036 design horizon. As opposed to an approach whereby the Applicant and Council's consultant development similar strategic and microsimulation models in parallel, the proposed approach will minimise duplication of, and potentially redundant work, and facilitate consistency in the modelling.

It is assumed that this modelling would compare the performance of the road network under the current planning controls (i.e. 1,085 apartments in the Shepherd Street precinct as the future baseline scenario), to the 1,500 apartments in the Shepherd Street precinct which are being assessed under this planning proposal. This modelling will allow Council and the Applicant to finalise the commitments required to ensure traffic impacts of the proposal are appropriately addressed.

In addition to the network analyses proposed to be undertaken, additional local (SIDRA) intersection modelling has been undertaken, to support the proposal. The results of the additional traffic analyses / investigations requested by Council are outlined in the following sections.

2.0 Amended Proposal – Intended Development Outcomes

The current Concept Masterplan is included for reference as Appendix A.

This amended Planning Proposal seeks to vary the planning controls of the Liverpool Local Environmental Plan 2008 for the subject sites, to facilitate residential development with the indicative yields as outlined in **Table 2.0** below.

Site	Property Description	Area	Indicative Yield
Properties which are th	e subject of this Planning Proposal		
20 Shepherd Street	Lot 1 on DP247485	9,908 m ²	309 apartments
26 - 28 Shepherd Street	Lot 22 and 23 on DP859055	8,721 m ²	375 apartments
32-34 Shepherd Street	Lot 3 and Lot 4 on DP247485	3,988 m ²	178 apartments
31-33 Shepherd Street	Lot 5 and Lot 6 on DP247485	8,427 m ²	339 apartments
Sub-total		31,044 m ²	1,201 apartments
Additional properties w	ithin Masterplan Area		
19 Shepherd Street	SP70274	2,128 m ²	50 apartments
21 Shepherd Street	SP30264	2,090 m ²	49 apartments
25 Shepherd Street	Lot 11 on DP1131075	3,948 m ²	102 apartments
27 Shepherd Street	Lot 8 on DP247485	2,123 m ²	61 apartments
29 Shepherd Street	Lot 7 on DP247485	2,086 m ²	37 apartments
Sub-total		12,375 m ²	299 apartments

Table 2.0: Indicative Yields by Property

It is reiterated that whilst this Planning Proposal relates to the rezoning of the properties on the eastern side of Shepherd Street only (i.e. 1,201 apartments on 20, 26, 28, 32-24, and 31-33 Shepherd Street), the traffic investigations undertaken consider the impact of the redevelopment of all properties on Shepherd Street (i.e. 1,500 apartments), as requested by Council.

The following sections summarise the results of the additional analyses and investigations undertaken.

3.0 Additional Traffic Analyses

The Traffic Report which accompanied the original Planning Proposal included the results of analyses of the following intersections (see **Figure 3.0** below):

- 1. Shepherd Street / Atkinson Street
- 2. Shepherd Street / Riverpark Drive
- 3. Shepherd Street / Speed Street
- 4. Speed Street / Mill Road

Figure 3.0: Key Intersections Previously Analysed

The results of the traffic modelling undertaken revealed that there is substantial spare capacity at all four intersections modelled during the critical AM and PM peak hours to accommodate the traffic expected to be generated by the previous (higher yield) scheme (i.e. 1,750 apartments), at the 2035 design horizon. Under all design scenarios, these intersections were modelled to perform well within acceptable capacity limits.

The four (4) intersections identified above were selected for assessment given their proximity to the precinct, and the fact that all traffic accessing the precinct would necessarily travel through Intersections 1, 2, and 3, as this is the only route to/from the catchment.

The analyses previously undertaken did not extend to intersections which are more remote from the precinct, for the following key reasons:

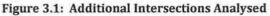
- whilst it was acknowledged that the proposal was for development of a reasonable scale, residential land
 uses are inherently low traffic generators on a per square meter basis (particularly when located in
 walking distance of a CBD centre or public transport services). The overall <u>net</u> traffic impact of the
 proposal was therefore not considered to be substantial, particularly in light of the following
 considerations:
 - the traffic generation of the existing and historic industrial developments within the precinct, which generated reasonable volumes of heavy vehicle traffic but would be removed under the proposal; and
 - the anticipated and planned increase in mode share to public and active transport modes, and the resulting reduced reliance upon private vehicle expected over the next 10 - 20 years;
- traffic from the network, upon reaching Speed Street, would disperse towards the arterial road network (e.g. the Hume Highway, Newbridge Road/Terminus Street, Bigge Street) via various routes depending upon its destination. That is, whilst is was acknowledged that traffic increases at more remote intersections would occur, these increases would be diluted as distance from the Masterplan area increases, such that the overall impact upon their performance was considered likely to be marginal; and
- importantly, the proposal did not involve substantially more development than anticipated under the
 existing planning controls (for which it was assumed separate traffic and transport planning would
 necessarily have been undertaken). That is, the proposal was largely consistent with the current high
 density zoning of the precinct, in terms of overall traffic impact.

Notwithstanding the above, additional intersections analyses have been undertaken, as requested by Council. The following sections summarise the results of these additional analyses.

3.1 Intersection Overview

The following additional intersections have been analysed, to assess their future operation and the expected impact of the proposal:

- 5. Speed Street / Bigge Street / Pirie Street
- 6. Newbridge Road / Speed Street
- 7. Terminus Street / Pirie Street


These intersections are located approximately 600m to the north of the subject site.

Newbridge Road / Terminus Street forms part of State Road MR 512, which connects from the Princes Highway (HW1) near Heathcote to the east of Liverpool City Centre, via Heathcote Road, Newbridge Road, Terminus Street and Macquarie Street to Copeland Street (Hume Highway HW2) to the west of the Liverpool City Centre. Newbridge Road carries in the order of 36,000vpd (2015 Average Annual Daily Count) at the bridge over the Georges River. Accordingly, the intersections along this road currently carry high volumes of traffic.

Furthermore, due to the fact that Bigge Street forms a primary access route between Newbridge Road and the Liverpool City Centre and other key destinations such as Liverpool Hospital (via the underpass of Newbridge Road), the traffic volumes at the Speed Street / Bigge Street / Pirie Street intersection during the peak periods are relatively substantial.

These intersections are discussed in further detail in the following sections.

3.1.1 Speed Street / Bigge Street / Pirie Street

The Speed Street / Bigge Street / Pirie Street Intersection is a four-way signalised intersection, as shown in **Figure 3.1.1** below.

This intersection was recently upgraded from a priority-controlled intersection to a signalised intersection, to better cater for the significant turning movement volumes between the northern and eastern approaches in particular (due to the fact that Bigge Street forms a primary access route between Newbridge Road and the Liverpool City Centre and other key destinations such as Liverpool Hospital, via the underpass of Newbridge Road, as previously discussed).

Figure 3.1.1: Speed Street / Bi

gge Street / Pirie Street Intersection

3.1.2 Newbridge Road / Speed Street Intersection

The Newbridge Road / Speed Street intersection is a four-way signalised intersection, as shown in **Figure 3.1.2a** below. The northern approach of the intersection is a bus only lane.

It is understood that as part of the refurbishment of the development on the south-east corner of the intersection (2 – 4 Speed Street), the pedestrian footbridge over Newbridge Road is to be demolished, and Newbridge Road and Speed Street are to be widened on the corner of the intersection to better accommodate the left turn manoeuvre from east to south (see **Figure 3.1.2b** below). This should enable the left turn movement from Newbridge Road into Speed Street to run concurrently with the right turn movement from Speed Street, in the phasing sequence.

Figure 3.1.2a: Shepherd Street / Riverpark Drive Intersection

Figure 3.1.2b: Approved Plan (DA1097/2013)

INROADS:GROUP

3.1.3 Terminus Street / Pirie Street Intersection

The Terminus Street / Pirie Street intersection is a four-way signalised intersection, as shown in **Figure 3.1.3** below.

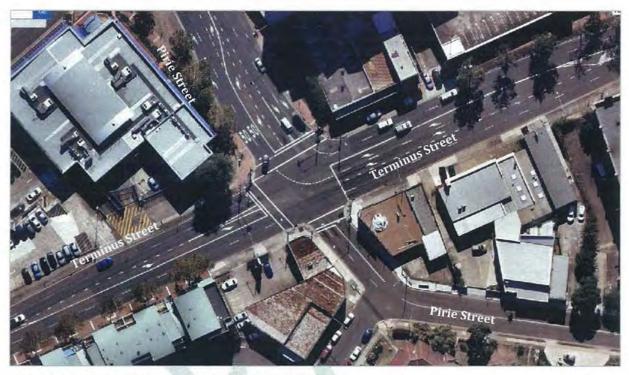


Figure 3.1.3: Terminus Street / Pirie Street Intersection

3.2 Intersection Modelling

3.2.1 Background Traffic Volumes

For the purpose of the additional traffic analyses, turning movement counts were undertaken at the three (3) subject intersections on Tuesday 31 May 2016, between the hours of 7:00am – 9:00am and 3:00pm – 6:00pm. The traffic volumes recorded during the peak hours are included for reference as **Appendix B**.

As requested by Council, the 2026 and 2036 design horizons have been assessed for the additional intersection modelling undertaken. In order to establish future year background traffic volumes, data from the RMS Emme Strategic Traffic Assignment Model has been used. This data (7-9 AM, 4-6 PM (2 hour Peak)) is provided for reference as **Appendix C**, and the traffic volumes presented in this data for Newbridge Road (east of Speed Street) are summarised in **Table 3.2.1** below. The observed 2016 traffic volumes are included for the purpose of comparison, and the compound growth rates implied by the RMS data are also summarised in **Table 3.2.1**, by travel direction.

	Eastbound			Westbound		
	2 Hour Volume	Growth Factor (from 2015)	Compound Growth Rate (from 2015)	2 Hour Volume	Growth Factor (from 2015)	Compound Growth Rate (from 2015)
Observed AM (2016 Count)	2,939	-		3,058		-
2015 AM	3,070		/	3,507		
2026 AM	3,653	1.19	1.59%	4,510	1.29	2.31%
2036 AM	3,960	1.29	1.22%	5,002	1.43	1.71%
Observed PM (2016 Count)	3,285	1. 10.	-	3,524		
2015 PM	3,478		÷	3,333	a.	1
2026 PM	4,390	1.26	2.14%	4,180	1.25	2.08%
2036 PM	4,924	1.42	1.67%	4,706	1.41	1.66%

Table 3.2.1: Forecast Two Hour Traffic Volumes from RMS Emme Strategic Traffic Assignment Model (Newbridge Road, East of Speed Street)

The above data reveals that the RMS data indicates a forecast compound growth rate of between approximately 1.2% and 2.2% on existing volumes, for traffic on Newbridge Road.

With a view to maintaining a conservative approach, a 2% compound growth factor has been applied to the remaining traffic movements at the intersections analysed, in order to forecast 2026 and 2036 turning movement volumes at the three (3) subject intersections. The resulting forecast traffic volumes are shown in **Appendix D**.

3.2.2 Masterplan Traffic Generation

The RMS Guide to Traffic Generating Developments provides a peak hour trip rate of 0.29 vehicle trips / dwelling for High density residential flat buildings in Metropolitan Sub-Regional Centres. The application of this rate to the 1,500 apartments provides a forecast traffic generation of 435 vehicle trips in the AM and PM peak hours.

Based upon investigations undertaken by Smyth Consulting (as documented in the 'Strategic Integrated Transport Assessment'), it is assumed that over time, people's travel behaviour will change as a result of a number of factors. This will result in a reduced dependence upon private vehicle, and an increase in mode share to public transport and active travel models. In light of the estimate of future mode share for the precinct presented in Table 2 of the Smyth Consulting report, the following assumptions have been made:

- By 2026, there will be a 10% reduction in mode share to private vehicle (i.e. a trip generation rate of 0.261 trips per dwelling will apply); and
- By 2036, there will be a 20% reduction in mode share to private vehicle (i.e. a trip generation rate of 0.232 trips per dwelling will apply).

The resulting predicted peak hour trip generation volumes are therefore 392 vehicle trips in 2026, and 348 vehicle trips in 2036.

Assuming an 80% / 20% departure / arrival profile in the AM peak hour, and a 70% / 30% arrival / departure profile in the PM peak hour, the forecast traffic generation associated with the 1,500 residential apartments is as outlined in **Table 3.2.2** below.

		2026			2036	
	Arrivals	Departures	Total	Arrivals	Departures	Total
AM Peak Hour	78	313	392	70	278	348
PM Peak Hour	274	117	392	244	104	348

Table 3.2.2: Forecast Masterplan Traffic Generation

3.2.3 Masterplan Traffic Distribution

The distribution of traffic generated by the precinct has been estimated considering the likely travel routes to and from key destinations (i.e. local trips) and arterial roads (i.e. more regional trips), as follows:

- Liverpool Hospital Medical Precinct
- Westfield Liverpool
- Local Primary Schools and High Schools
- Warwick Farm Railway Station Commuter Carpark
- Proposed Eat Street (Macquarie St)
- The Hume Highway
- Newbridge Road (Light Horse Bridge)
- The M5 Motorway
- Cumberland Highway

The figures included as **Appendix E** show the most direct routes to the above destinations, from the Shepherd Street precinct. The resulting assumptions applied in order to assign the traffic generated by the precinct to the broader road network, are as follows:

- 40% of traffic will travel to/from Bigge Street (i.e. the CBD / Liverpool Hospital Medical Precinct);
- 20% of traffic will travel to/from the Hume Highway south / M5 Motorway (inbound);
- 20% of traffic will travel to/from Pirie Street (i.e. south/west of CBD, Hume Highway north / Cumberland Highway);
- 10% of traffic will travel to/from Newbridge Road / M5 Motorway (outbound); and
- 10% of traffic will travel to/from Hoxton Park Road.

The resulting predicted increase in traffic volumes at the three (3) additional intersections assessed, are shown in **Appendix F.**

3.2.4 Design Volumes

The design volumes for the 2026 and 2036 design horizons (i.e. the forecast background traffic volumes plus the additional traffic expected to be generated by the 1,500 apartments) at the three (3) additional intersections assessed, are shown in **Appendix G**.

It should be noted that the analyses undertaken include a reasonable degree of conservatism, as the traffic currently generated by existing developments (which would be demolished and replaced in order to deliver the residential developments proposed), has not been discounted.

The intersections were analysed using the SIDRA computer program to determine the intersection performance characteristics under the 'without masterplan' and 'with masterplan' design future design scenarios. The SIDRA modelling package produces a range of outputs, the most useful of which are the Degree of Saturation (DOS) and Average Vehicle Delay (AVD). The AVD is in turn related to a level of service (LOS) criteria. These performance measures can be interpreted using the following explanations:

Degree of Saturation (DOS) - the DOS is a measure of the operational performance of individual intersections. Both queue length and delay increase rapidly as DOS approaches 1.

Average Vehicle Delay (AVD) - the AVD for individual intersections provides a measure of the operational performance of an intersection. In general, levels of acceptability of AVD for individual intersections depend on the time of day (motorists generally accept higher delays during peak commuter periods) and the road system being modelled (motorists are more likely to accept longer delays on side streets than on the main road system).

Level of Service (LOS) - this is a comparative measure which provides an indication of the operating performance of an intersection using the guidelines in **Table 3.2.4** below.

Level of Service	Average Delay per Vehicle	Performance
A	<14 seconds	Good operation
В	15 – 28 seconds	Good with acceptable delays and spare capacity
С	29 – 42 seconds	Satisfactory
D	43 – 56 seconds	Operating near capacity
E	57 – 70 seconds	At capacity, requires other control mode
F	> 71 seconds	At capacity, requires other control mode

Table 3.2.4: Level of Service Performance Criteria (Traffic Signals)

The results of the analyses undertaken at the Speed Street / Bigge Street / Pirie Street intersection, the Newbridge Road / Speed Street intersection, and the Terminus Street / Pirie Street intersection, are outlined in the following sections.

3.2.5 Modelling Results

3.2.5.1 Intersection 5 - Speed Street / Bigge Street / Pirie Street intersection

Based upon the aforementioned information and assumptions, the modelling results for the 2026 and 2036 design horizons <u>without</u> the additional traffic forecast to be generated by the Shepherd Street precinct (i.e. based upon forecast future background traffic volumes) at the Speed Street / Bigge Street / Pirie Street intersection are as outlined in **Appendix H**, and summarised in the following table.

Table 3.2.5.1a: Intersection Performance (Without Development)

	Degree of Saturation (DOS)	Average Vehicle Delay (AVD)	Intersection Level of Service (LOS)
2016 Observed Volumes			
AM Peak	0.583	10.5 secs	LOSA
PM Peak	0.634	10.9 secs	LOS A
2026 Design Horizon			
AM Peak	0.730	10.9 secs	LOSA
PM Peak	0.795	13.8 secs	LOSA
2036 Design Horizon			
AM Peak	0.711	12.2 secs	LOSA
PM Peak	1.032	33.7 secs	LOSC

The above results demonstrate that the Speed Street / Bigge Street / Pirie Street intersection is expected to be approaching acceptable operational capacity limits by the 2036 design horizon, <u>without</u> the additional traffic forecast to be generated by the Shepherd Street precinct. This is largely due to the heavy right turn volume from Bigge Street onto Speed Street (northbound) which is anticipated during the PM peak.

Given Liverpool's City Council's planning for an additional 7,500 residential dwellings in the CBD, and the additional pressure this would place on this intersection, it is anticipated that Council may have plans for a future upgrade to the Speed Street / Bigge Street / Pirie Street intersection. Notwithstanding this, option testing has been undertaken in order to determine an appropriate treatment to increase the capacity of this intersection. It has been determined that the provision of a short additional stand-up lane on the eastern approach (i.e. a 20m long left turn lane) would facilitate acceptable operation at the 2036 design horizon, as outlined in **Appendix I**, and as summarised in **Table 3.2.5.1b** below.

Table 3.2.5.1b: Intersection Performance (Without Development, with Upgrade)

	Degree of Saturation (DOS)	Average Vehicle Delay (AVD)	Intersection Level of Service (LOS)
2036 Design Horizon			
AM Peak	0.711	12.1 secs	LOS A
PM Peak	0.850	15.4 secs	LOS B

Considering the impact of the additional traffic expected to be generated by the Shepherd Street precinct, the results of the intersection analyses both without and with the proposed development are as outlined in **Appendix J**, and as summarised in **Table 3.2.5.1c** below.

	Degree of Saturation (DOS)	Average Vehicle Delay (AVD)	Intersection Level of Service (LOS)
2026 Design Horizon (<u>Existing</u> Intersection Configuratio	n)		
AM Peak	0.730	10.9 secs	LOS A
AM Peak With Development	0.777	13.5 secs	LOS A
PM Peak	0.795	13.8 secs	LOS A
PM Peak With Development	0.963	25.7 secs	LOS B
2036 Design Horizon (<u>Upgraded</u> Intersection Configurat	ion)		
AM Peak	0.711	12.1 secs	LOS A
AM Peak With Development	0.921	16.6 secs	LOS B
PM Peak	0.850	15.4 secs	LOS B
PM Peak With Development	0.947	22.3 secs	LOS B

Table 3.2.5.1c: Comparative Intersection Performance (Without and With Development)

The above results demonstrate that the Speed Street / Bigge Street / Pirie Street intersection:

- is expected to operate generally within acceptable limits at the 2026 design horizon, with the additional traffic forecast to be generated by the Shepherd Street precinct, under its existing configuration; and
- is expected to operate generally within acceptable limits at the 2036 design horizon, with the additional traffic forecast to be generated by the Shepherd Street precinct, assuming the upgraded intersection configuration required to cater for the higher forecast background traffic volumes.

Notwithstanding the above, it is acknowledged that the traffic generated by the Shepherd Street precinct will have an impact upon the performance of this intersection, and may bring forward the need for ameliorative works at the intersection.

As such, it is suggested that the Applicant make a partial contribution towards future upgrades to this intersection, to be used by Council as and when required.

It may be more cost-effective to direct such funds towards a higher capacity intersection treatment which may be identified as part of the broader traffic study currently being undertaken on behalf of Council, rather than piecemeal (minimal) upgrade works as identified as part of these analyses.

3.2.5.2 Intersection 6 - Newbridge Road / Speed Street intersection

Based upon the aforementioned information and assumptions, the modelling results for the 2026 and 2036 design horizons <u>without</u> the additional traffic forecast to be generated by the Shepherd Street precinct (i.e. based upon forecast future background traffic volumes) at the Newbridge Road / Speed Street intersection are as outlined in **Appendix K**, and summarised in the following table.

	Degree of Saturation (DOS)	Average Vehicle Delay (AVD)	Intersection Level of Service (LOS)
2016 Observed Volumes			
AM Peak	0.825	18.0 secs	LOS B
PM Peak	0.855	28.4 secs	LOS B
2026 Design Horizon			
AM Peak	0.867	16.9 secs	LOS B
PM Peak	0.980	61.6 secs	LOS E

Table 3.2.5.2a: Intersection Performance (Without Development)

The above results demonstrate that the Newbridge Road / Speed Street intersection is expected to be approaching acceptable operational capacity limits by the 2026 design horizon, <u>without</u> the additional traffic forecast to be generated by the Shepherd Street precinct. This is largely due to the increase in through traffic on Newbridge Road.

Given RMS' forecast traffic growth on Newbridge Road and the additional pressure this would place on this intersection, it is anticipated that RMS may have plans for a future upgrade to the Newbridge Road / Speed Street intersection. Notwithstanding this, option testing has been undertaken in order to determine an appropriate treatment to increase the capacity of this intersection.

It has been determined that the provision of a short additional stand-up lane on the eastern approach (i.e. a 60m long left turn lane) would facilitate acceptable operation at the 2026 design horizon, as outlined in **Appendix L**, and as summarised in **Table 3.2.5.2b** below. However the modelling results suggest that an additional upgrade may be required by the 2036 design horizon.

Table 3.2.5.2b: Intersection Performance (Without Development, with Upgrade)

	Degree of Saturation (DOS)	Average Vehicle Delay (AVD)	Intersection Level of Service (LOS)
2026 Design Horizon			
AM Peak	0.845	17.7 secs	LOS B
PM Peak	0.916	30.6 secs	LOS C
2036 Design Horizon			
AM Peak	0.844	22.0 secs	LOS B
PM Peak	0.997	61.0 secs	LOS E

In any case, the Shepherd Street precinct is expected to prompt only a very marginal increase in turning movement volumes at this intersection, as suggested by the results of the intersection analyses both without and with the proposed development which are provided in **Appendix M**, and summarised in **Table 3.2.5.2c** below.

	Degree of Saturation (DOS)	Average Vehicle Delay (AVD)	Intersection Level of Service (LOS)
2026 Design Horizon (<u>Upgraded</u> Intersection Configuration)			
AM Peak	0.845	17.7 secs	LOS B
AM Peak With Development	0.845	18.0 secs	LOS B
PM Peak	0.916	30.6 secs	LOS C
PM Peak With Development*	0.902	29.4 secs	LOSC
2036 Design Horizon (<u>Upgraded</u> Intersection Configuration)			
AM Peak	0.842	22.0 sēcs	LOS B
AM Peak With Development	0.844	22.1 secs	LOS B
PM Peak	0,997	61.0 secs	LOS E
PM Peak With Development	1.002	70.0 secs	LOS E

* Note: modelling results indicate an improvement under the 'with development' scenario, as the signal phase timings have been optimised in the modelling program and the program is running a longer cycle time under the 'with development' scenario.

In light of the above modelling results and the marginal impact of the traffic generated by the Shepherd Street precinct upon the performance of the intersection, as well as the broader planning which we understand is being undertaken by Council / RMS to address traffic growth on key roads in the Liverpool area, no ameliorative works are considered to be warranted at the Newbridge Road / Speed Street intersection to support the proposal.

It is considered that the Section 94 contributions levied against the development would represent an appropriate contribution towards any future upgrade works which may be required at this intersection.

3.2.5.3 Intersection 7 - Terminus Street / Pirie Street intersection

Based upon the aforementioned information and assumptions, the modelling results for the 2026 and 2036 design horizons <u>without</u> the additional traffic forecast to be generated by the Shepherd Street precinct (i.e. based upon forecast future background traffic volumes) at the Terminus Street / Pirie Street intersection are as outlined in **Appendix N**, and summarised in the following table.

	Satura	Degree of tion (DOS)	e Vehicle ay (AVD)	Intersection Leve of Service (LOS
2016 Observed Volumes				
AM Peak		0.608	28.5 secs	LOSI
PM Peak	(4)	0.452	23.4 secs	LOSI
2026 Design Horizon				
AM Peak		0.732	30.0 secs	LOS
PM Peak		0.568	24.3 secs	LOSI
2036 Design Horizon				
AM Peak		0.811	32.3 secs	LOS
PM Peak		0.639	25.1 secs	LOSI

Table 3.2.5.3a: Intersection Performance (Without Development)

The above results demonstrate that the Terminus Street / Pirie Street intersection is expected to operate within acceptable limits at the 2036 design horizon, without the traffic generated by the Shepherd Street precinct.

Considering the impact of the additional traffic expected to be generated by the Shepherd Street precinct, the results of the intersection analyses both without and with the proposed development are as outlined in **Appendix 0**, and as summarised in **Table 3.2.5.3b** below.

Table 3.2.5.3b: Comparative Intersection Performance (Without and With Development)

	Degree of Saturation (DOS)	Average Vehicle Delay (AVD)	Intersection Level of Service (LOS)
2026 Design Horizon			
AM Peak	0.732	30.0 secs	LOSC
AM Peak With Development	0.738	30.6 secs	LOSC
PM Peak	0.568	24.3 secs	LOS B
PM Peak With Development	0.644	26.0 secs	LOS B
2036 Design Horizon			
AM Peak	0.811	32.3 secs	LOS C
AM Peak With Development	0.811	32.9 secs	LOS C
PM Peak	0.639	25.1 secs	LOS B
PM Peak With Development	0.711	26.3 secs	LOS B

The above table demonstrates that the Terminus Street / Pirie Street intersection is expected to operate within acceptable limits at the 2036 design horizon, with the traffic generated by the Shepherd Street precinct. Furthermore, the traffic generated by the precinct is expected to have a marginal impact upon the performance of the intersection.

As a consequence, no upgrade works at this intersection are considered to be required to support the proposal.

4.0 Woodbrook Road Underpass

During recent discussions with Council surrounding the subject Planning Proposal, Council has suggested that Transport for NSW and the Australian Rail Track Corporation (ARTC) be approached, with a view to reopening the underpass of the rail line to re-establish the vehicular connection from Powerhouse Road to Woodbrook Drive.

This underpass is currently closed off by way of concrete barriers and fencing, as shown in **Figure 4.0** below.

Figure 4.0: Woodbrook Road Underpass (looking from Powerhouse Road, toward east)

It is understood that Council has previously investigated the option of re-opening this underpass as part of the Georges River Casula Parklands Master Plan (as a gated entry for emergency vehicles and special events at the Casula Powerhouse), and also as a two-way, one-lane connection for all vehicles (under 3.6m in height), as shown in the plan included as **Appendix P**.

Council has recently requested that the Applicant:

- 1. Review the traffic demand generated by the Shepherd Street precinct expected to use this underpass;
- 2. Identify traffic calming devices which may be required; and
- 3. Obtain in principal approval from Transport for NSW and ARTC for the reopening of this connection.

In response to each of the above:

- 1. The underpass would provide a connection from the Shepherd Street precinct to a small residential catchment bounded by the Hume Highway to the west, the M5 to the north, and the rail line to the east. It would not offer a particularly direct or convenient route to any arterial roads, or any significant local destinations. Whilst there may be a small demand for this route from the Hume Highway (south) or the M5 (westbound) to the precinct, the development of the precinct does not, in our view, trigger the need to re-open this connection. Importantly, the analyses undertaken <u>do not</u> rely upon the re-establishment of this connection, and assume that all traffic to/from the precinct travels via alternative (existing) routes. Notwithstanding this, the proponent has committed to working with Council and the RMS with a view to reopening the underpass, and will commence discussions with the relevant state agencies to facilitate this.
- 2. On the basis of (1) above, no traffic calming devices are considered to be required. However should this connection be re-opened at some point in the future and it be determined that traffic calming devices are required in the local residential catchment to control vehicle speeds, it is anticipated that these would simply involve platform or sinusoidal road humps (depending upon on-road cyclist arrangements), or chicanes, which are low cost treatments.
- 3. Notwithstanding the above, as previously mentioned, the proponent has committed to working with Council and the RMS with a view to reopening the underpass, and will commence discussions with the relevant state agencies to facilitate this.

5.0 Summary and Recommendations

In summary:

- The proposal seeks the of rezoning seven adjacent properties on Shepherd Street in Liverpool. The subject properties include all of those on the eastern side of Shepherd Street, south of Atkinson Street. Whilst currently zoned R4 high-density residential, an increase in the permitted height and floor space ratio is sought, to allow 1,201 residential apartments to be delivered on the subject properties (rather than 787 under the current planning controls).
- An overall Masterplan has been developed which assumes the redevelopment of all land parcels on Shepherd Street, i.e. also including the properties on the western side. An overall yield of approximately 1,500 residential apartments is anticipated for all properties on Shepherd Street (east and west) under this Masterplan, compared with 1,085 apartments under the existing planning controls. The proposed yield has been reduced from 1,774 apartments under the previous proposal.
- Whilst this Planning Proposal relates to the rezoning of the properties on the eastern side of Shepherd Street only, the traffic investigations undertaken considered the impact of the redevelopment of all properties on Shepherd Street, as requested by Council.
- Council has recently requested that transport network modelling (both strategic modelling and local
 microsimulation modelling) be undertaken by the Applicant, to assess the cumulative impact of
 development in Liverpool (i.e. of the Shepherd Street precinct in addition to other substantial
 development proposed/approved in and around the Liverpool CBD). Accordingly, the Applicant
 proposes to fund a 'variation' to the modelling to be undertaken by Council's consultant, to assess the
 impact of the Planning Proposal for the Shepherd Street precinct upon the broader road network at the
 2026 and 2036 design horizon.
- A 'Strategic Integrated Transport Assessment' for the precinct has been undertaken by Smyth Consulting. This provides a strategic-level assessment of the transport opportunities and constraints affecting the precinct, and identifies a set of initiatives that can deliver appropriate levels of access while minimising impacts upon the traffic and transport network.
- In addition to the above, additional local (SIDRA) intersection modelling has been undertaken, to support the proposal. The results of the additional traffic analyses / investigations requested by Council can be summarised as follows:
 - Speed Street / Bigge Street / Pirie Street intersection it is acknowledged that the Shepherd Street precinct will have an impact upon the performance of this intersection, and is therefore suggested that the Applicant make a partial contribution towards a minor upgrade to this intersection, to accommodate this additional traffic. It may however be more cost-effective to direct such funds towards a higher capacity intersection treatment which may be identified as part of the broader traffic study currently being undertaken on behalf of Council, rather than piecemeal (minimal) upgrade works as identified as part of these analyses.
 - Newbridge Road / Speed Street intersection the Shepherd Street precinct is expected to have a marginal impact upon the performance of the intersection. Given the broader planning which we understand is being undertaken by Council / RMS to address traffic growth on key

roads in the Liverpool area, no ameliorative works are considered to be warranted at the Newbridge Road / Speed Street intersection to support the proposal. It is considered that the Section 94 contributions levied against the development would represent an appropriate contribution towards any future upgrade works which may be required at this intersection.

- **Terminus Street / Pirie Street intersection** this intersection is expected to operate within acceptable limits at the 2026 and 2036 design horizons, with the additional traffic generated by the Shepherd Street precinct. The traffic generated by the precinct is expected to have a marginal impact upon the performance of the intersection. As a consequence, no upgrade works at this intersection are considered to be required to support the proposal.
- Whilst the development of the precinct does not, in our view, trigger the need to re-open the rail
 underpass connecting from Powerhouse Road to Woodbrook Road, and the analyses undertaken do not
 rely upon the re-establishment of this connection, the Applicant has committed to engaging with
 Transport for NSW and ARTC, in order to discuss the possibility of re-establishing this connection, as
 requested by Council.

In light of the information contained within this report, we consider that the proposal is satisfactory from a traffic operations perspective, and recommend that the Planning Proposal be approved from a traffic engineering perspective.

5.1 Qualifications

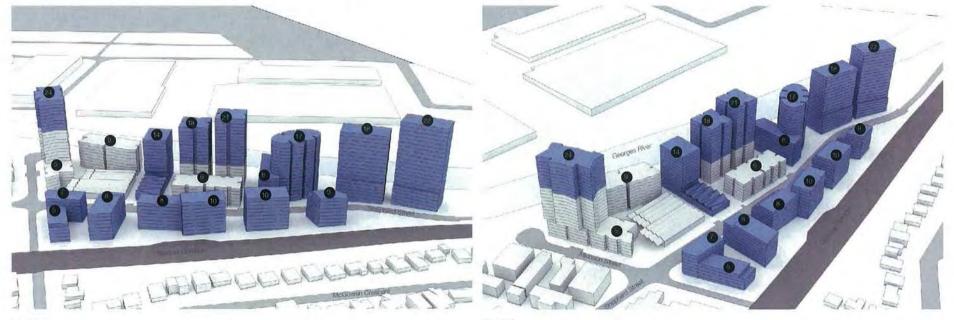
This report has been approved by Anne Coutts, Director (BE Civil, MIEAust, MAITPM).

APPENDIX A

Concept Masterplan

1.1 Preferred Concept - Plan

Lot	Storey	GFA	FSR	Dwellings	Height
Paper Mill	24	31,783m ²	3.22	309	75.8m
22-23	6-20	31,870m ²	3.67:1	375	67.3m
3+4	17	16,050m ²	3.53:1	178	55.7m
5+6	18-22	28,820m²	3.44:1	339	76.9m
7	9	3,299m ²	1.63	37	28.4m
8	10	5,497m ²	2.72	61	31.9m
11	8-10	9,141m ²	2.37	102	31m
SP- 30264	8	4,447m ²	2.2	49	25.5m
SP- 70274	5-7	4,472m²	2.2	50	22.4m
Key					
Site					
	posed				
	en Space				
Apr	proved				


1

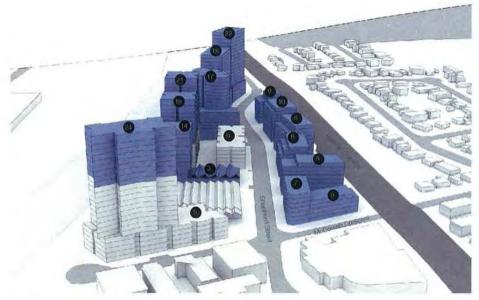
2

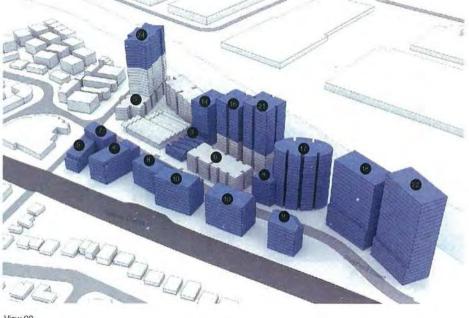
SJB Architects

Design Concept

1.2 Preferred Concept Massing

1


View 01


View 02

Key --- Site Boundary Proposed Allowable Approved

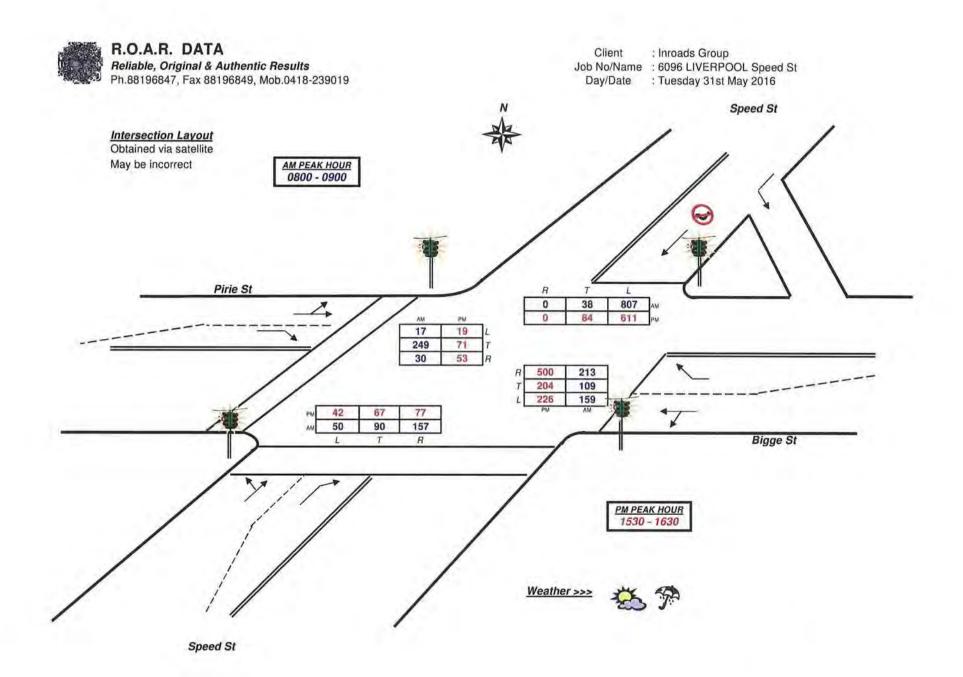
SJB Architects

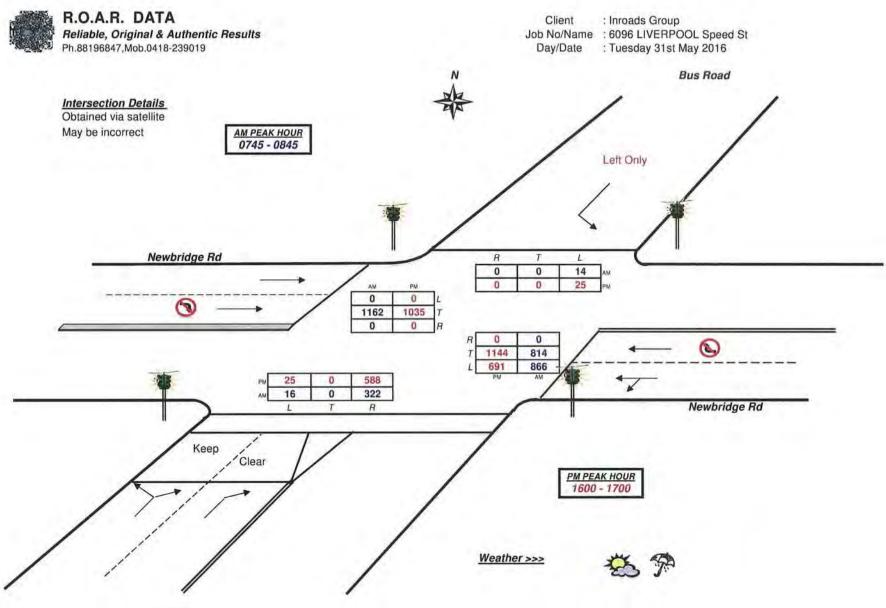
1.3 Preferred Concept Massing

1

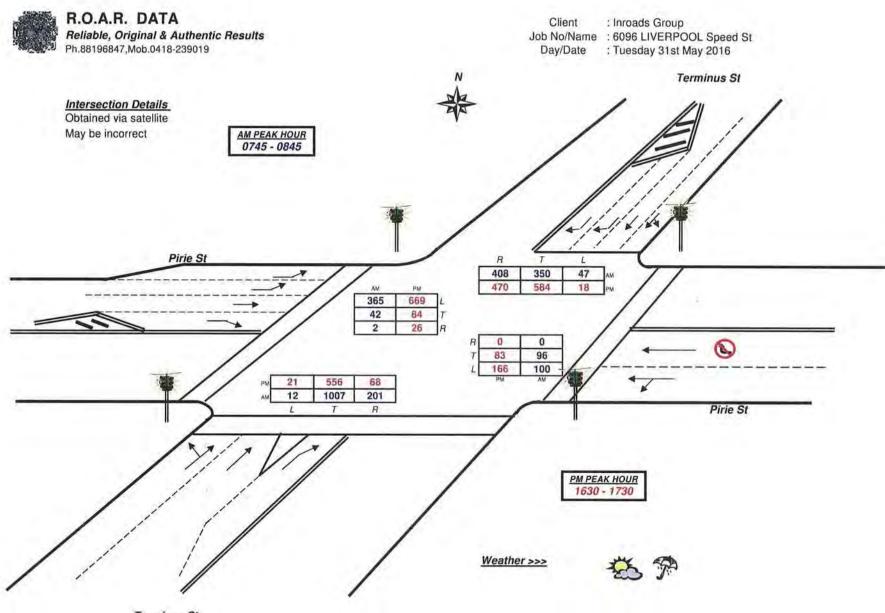
8

View 01


View 02



SJB Architects


APPENDIX B

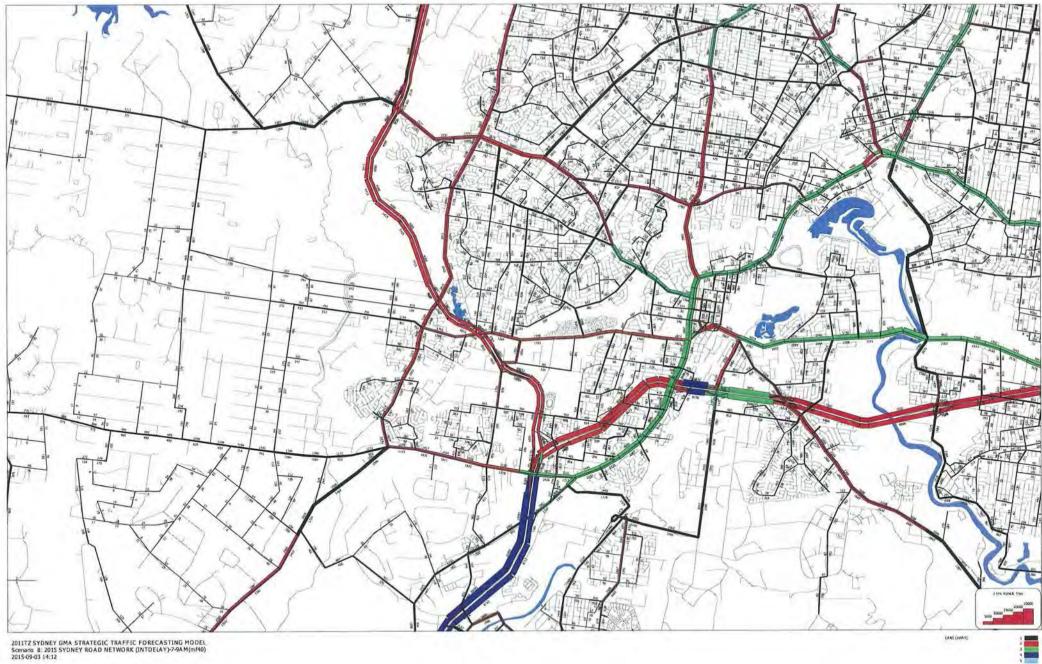
Existing Traffic Volumes

Speed St

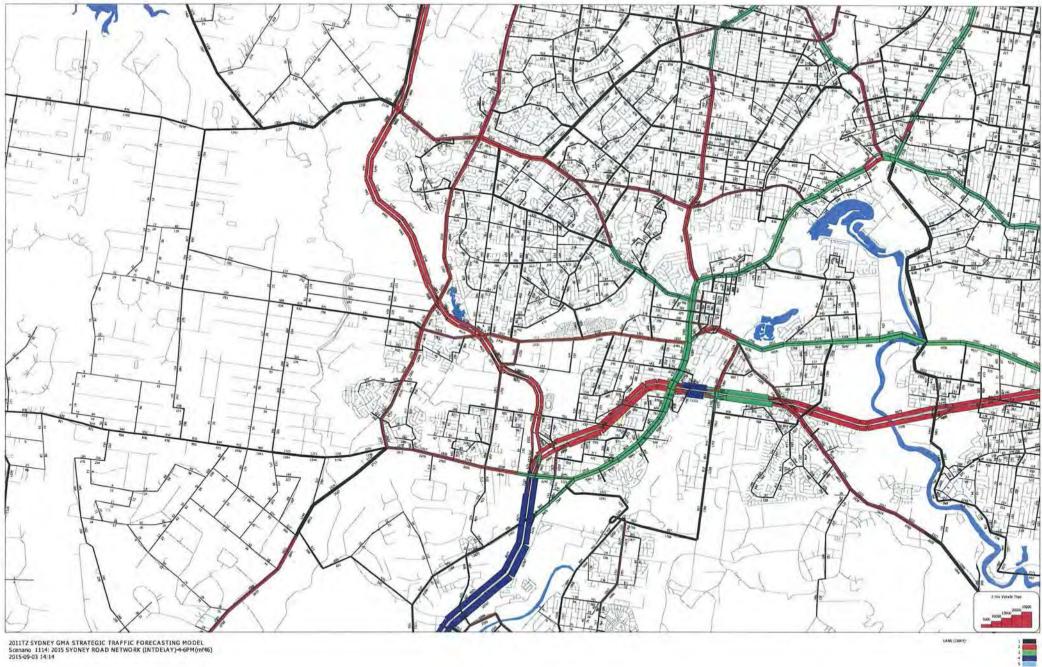
Terminus St

APPENDIX C

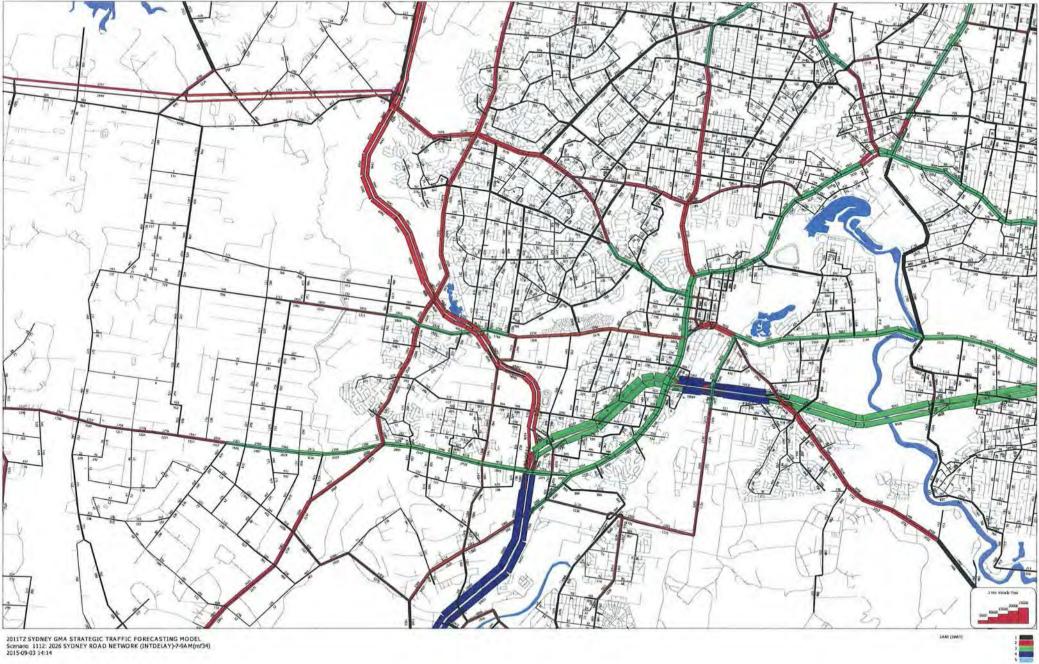
RMS Forecast Traffic Volumes (Emme Strategic Traffic Assignment Model, 7-9 AM, 4-6 PM (2 hour peak volumes))

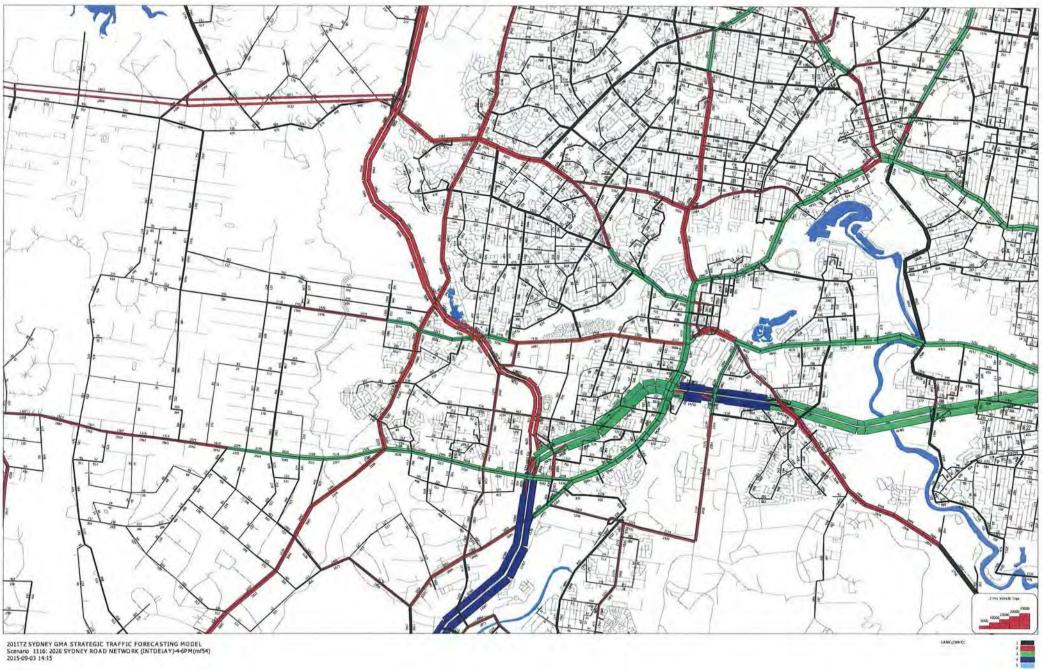

RMS EMME Model Assumptions and Disclaimer.txt RMS Emme Strategic Traffic Assignment Model (2015 Future Networks Version, All Vehicles) - Periods: 7-9 AM, 4-6 PM (2 hours Peak) Travel Forecast Assumptions (Auto Trip Tables): BTS Strategic Travel Model Ver.3.0, BTS Sept 2014 Land Use Assumptions).

Future Road Projects assumed in the model are for modelling purposes only and may change, they are not Government Policy nor do they reflect Government plans.


Currently the Future Road Projects list and Trip Tables are in the process of being updated to reflect most likely up to date policies and Land Use Assumptions (TNSW BTS).

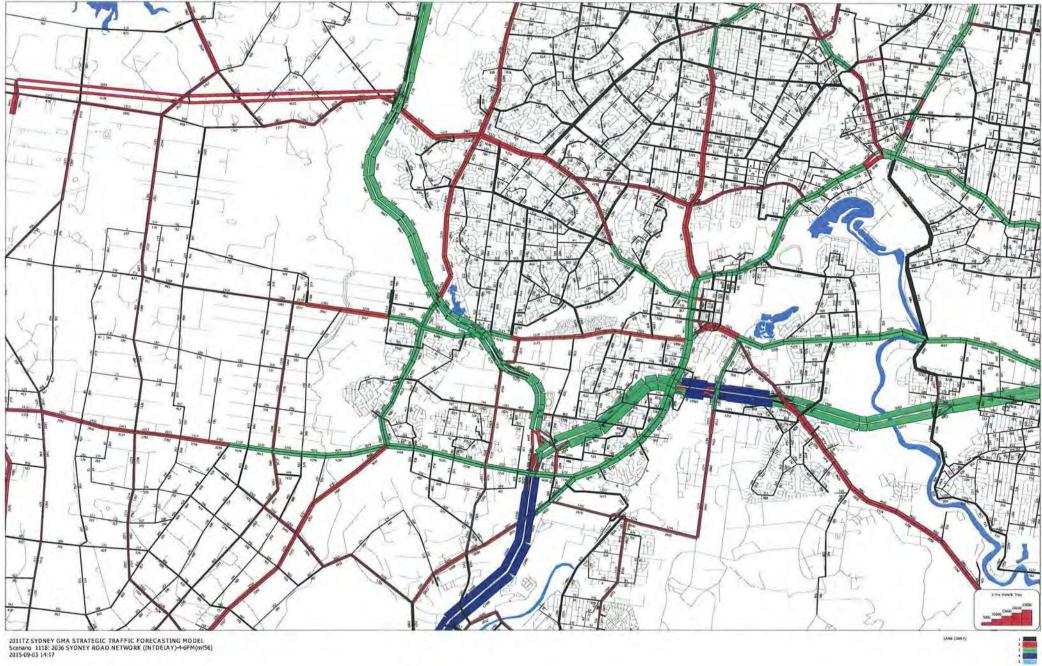
Disclaimer


While all care is taken in producing and publishing the traffic modelling data, no responsibility is taken or warrant made with respect to the accuracy of any information, data or representation. The authors (including copyright owners) and publishers expressly disclaim all liability in respect of anything done or omitted to be done and the consequences upon reliance of the contents of this information.


2011TZ SYDNEY GMA STRATEGIC TRAFFIC FORECASTING MODEL Scenario 8: 2015 SYDNEY ROAD NETWORK (INTDELAY)-7-9AM(m(40) 2015-09-03 14:12

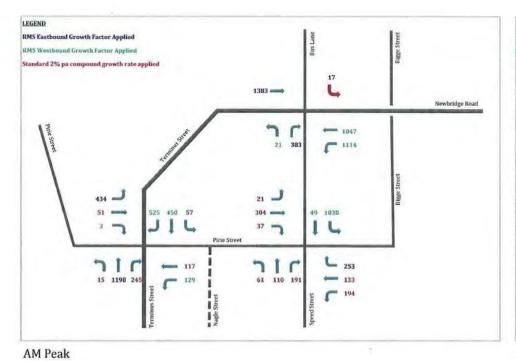
2011TZ SYDNEY GMA STRATEGIC TRAFFIC FORECASTING MODEL Scenario 1114: 2015 SYDNEY ROAD NETWORK (INTDEIAY)-4-6PM(m/46) 2015-09-03 14:14

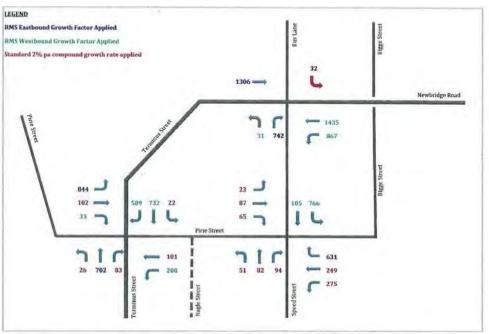
2011TZ SYDNEY GMA STRATEGIC TRAFFIC FORECASTING MODEL Scenario 1112: 2026 SYDNEY ROAD NETWORK (INTDEIAY)-79AM(m/34) 2015-09-03 14:14



2011TZ SYDNEY GMA STRATEGIC TRAFFIC FORECASTING MODEL Scenario 1116: 2026 SYDNEY ROAD NETWORK (INTDELAY)+46PM(mf54) 2015-09-03 14:15

2011TZ SYDNEY GMA STRATEGIC TRAFFIC FORECASTING MODEL Scenario 31127: 2036 SYDNEY ROAD NETWORK (INTDELAY)-7-9A M(mf36) 2015-09-03 14:16

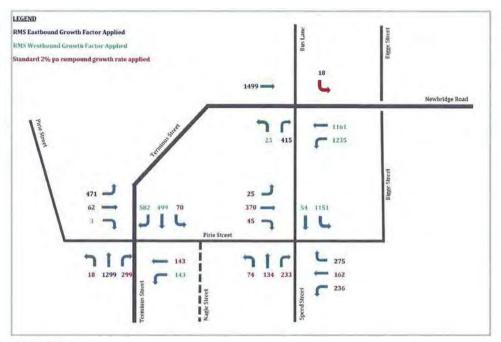




2011TZ SYDNEY GMA STRATEGIC TRAFFIC FORECASTING MODEL Scenario 1118: 2036 SYDNEY ROAD NETWORK (INTDELAY)-4-6PM(m/56) 2015-09-03 14:17

APPENDIX D

Forecast Future (2026 and 2036) Background Traffic Volumes




Date: 10/06/2016

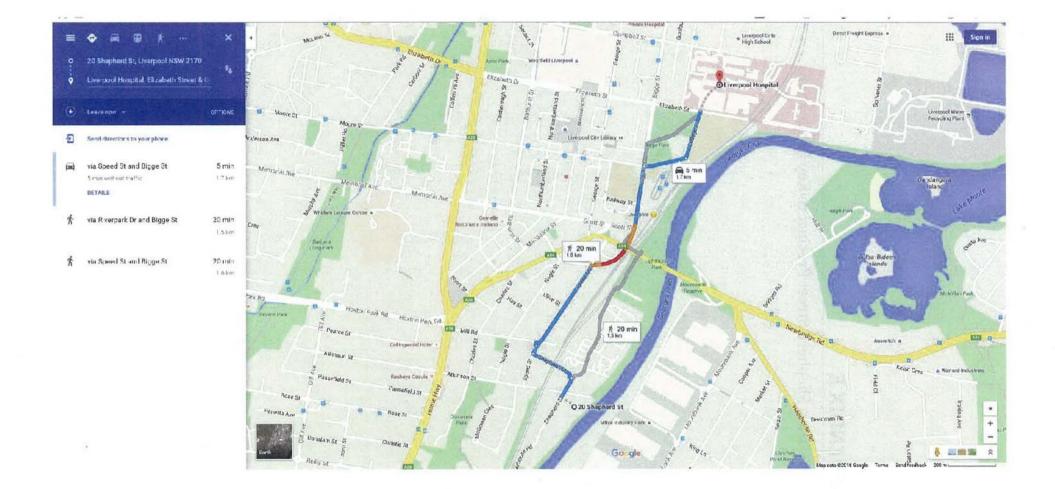
PM Peak

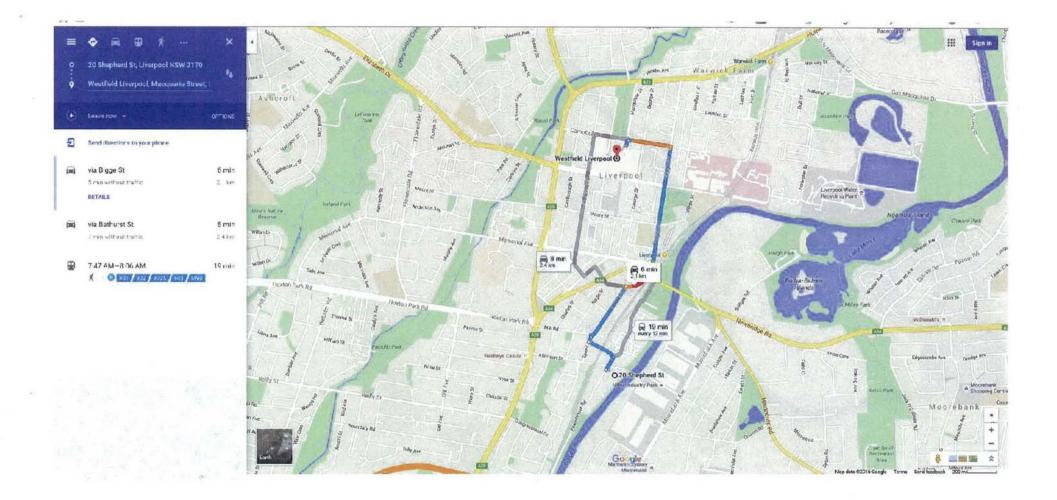
Forecast Background Traffic Volumes 2026 Design Horizon **Project:** 15-006

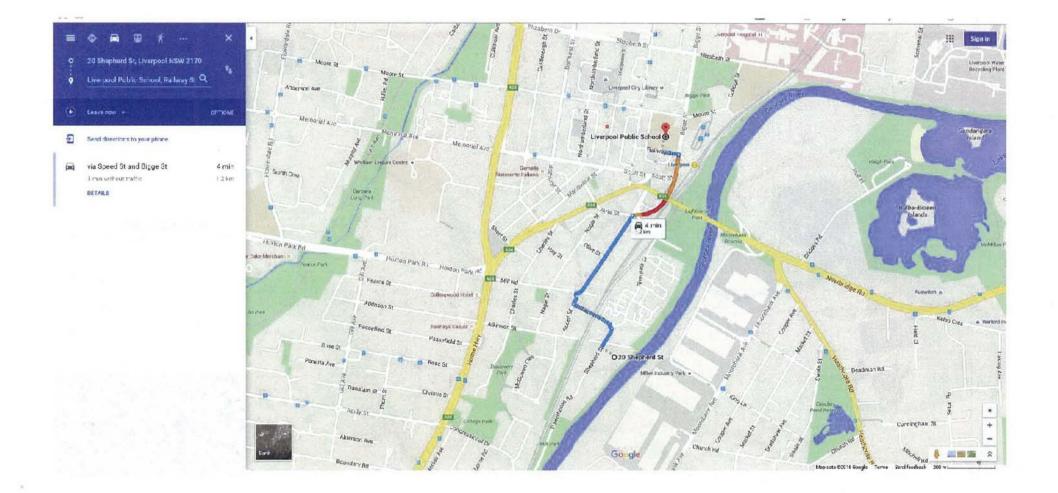
INRORDS:GROUP

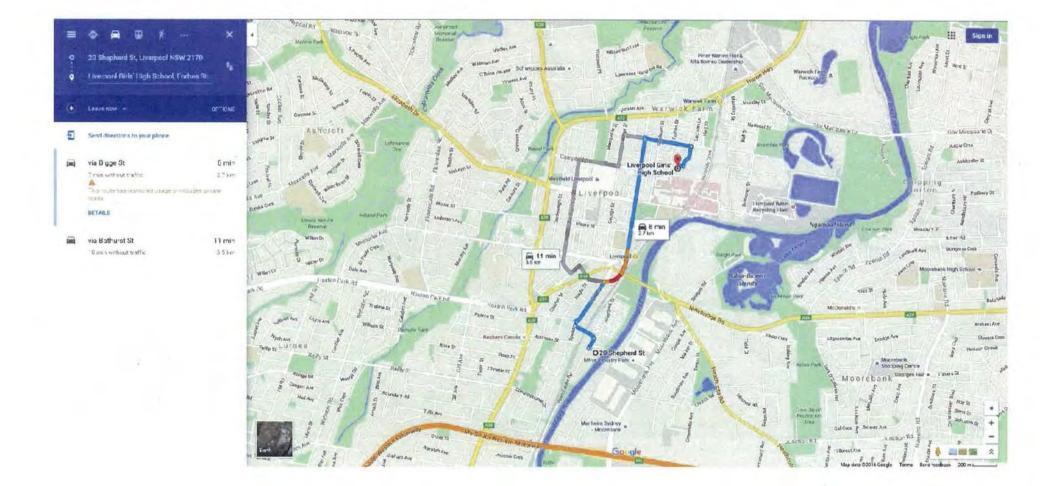
Date: 10/06/2016

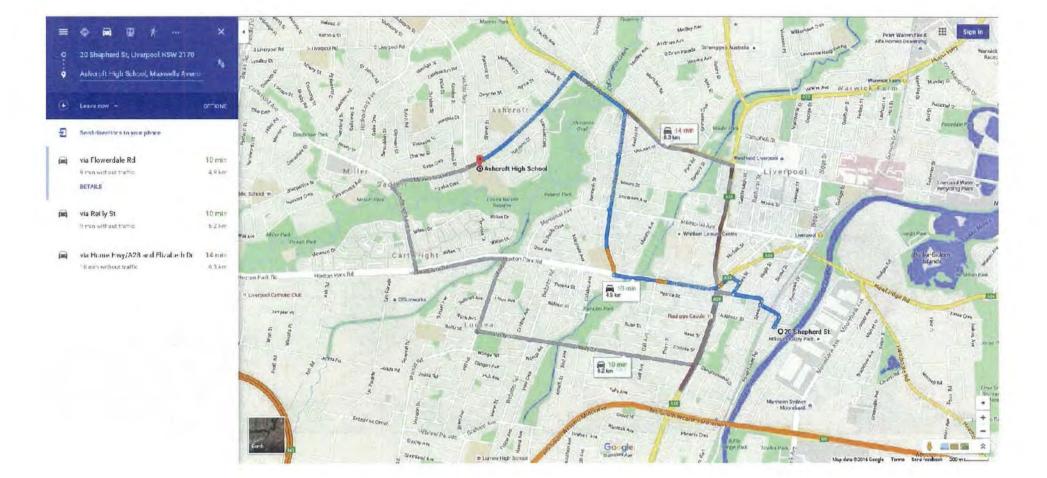
AM Peak

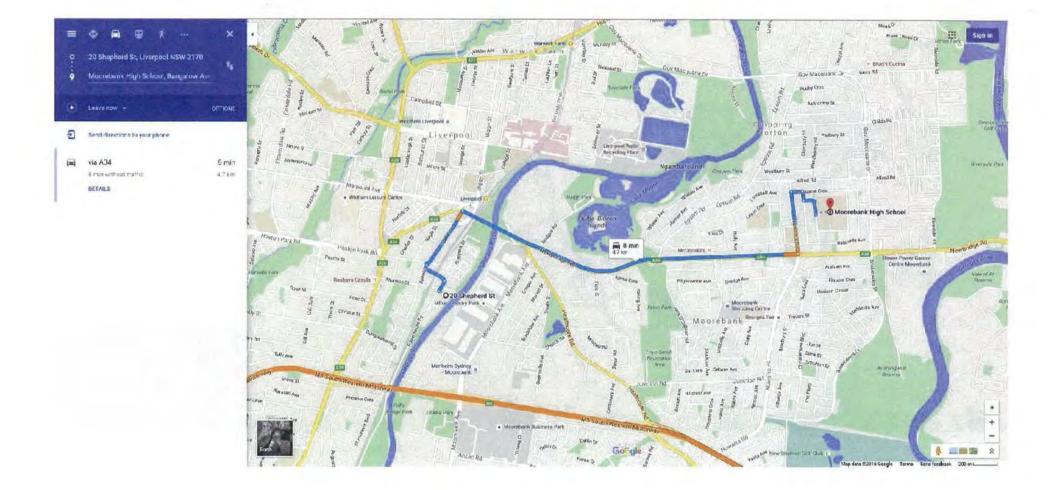

Forecast Background Traffic Volumes 2036 Design Horizon Project: 15-006

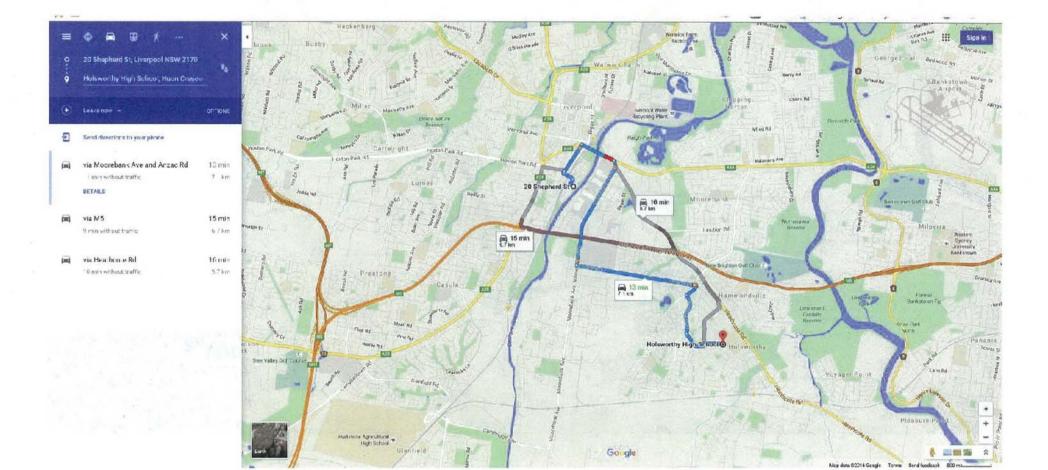

INROADS:GROUP

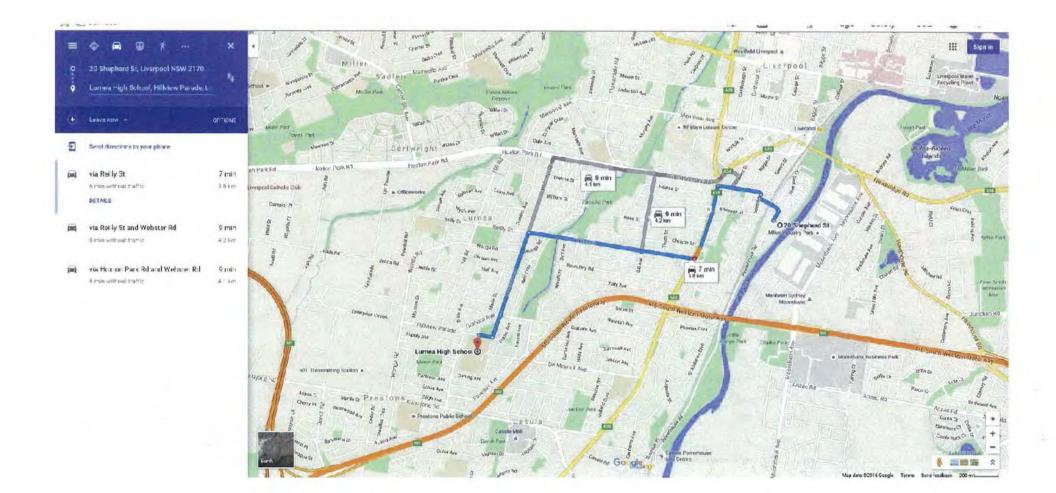

.

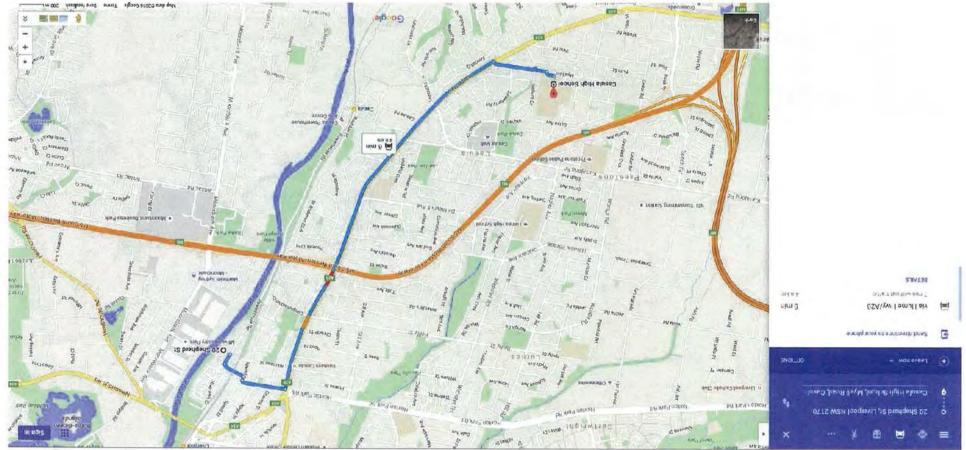

APPENDIX E

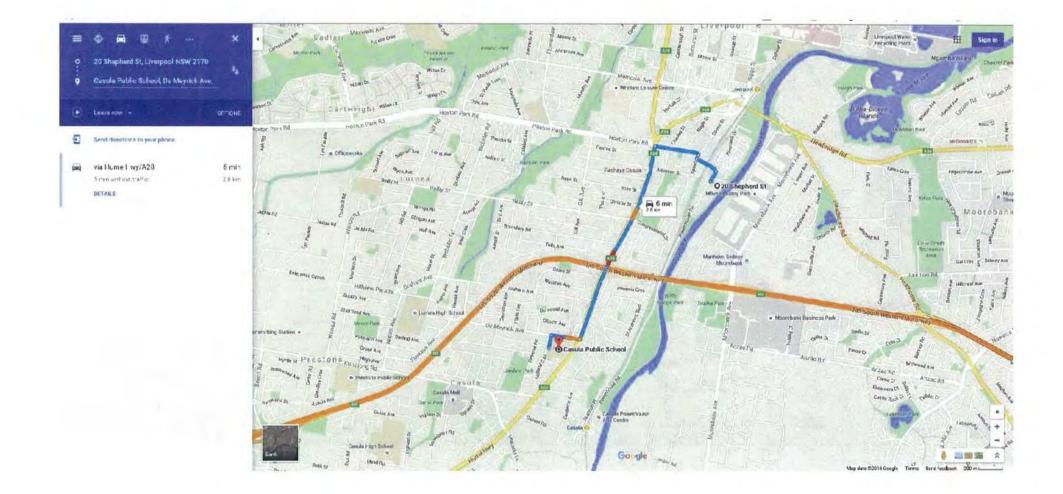

Routes from Shepherd Street Precinct to Key Destinations

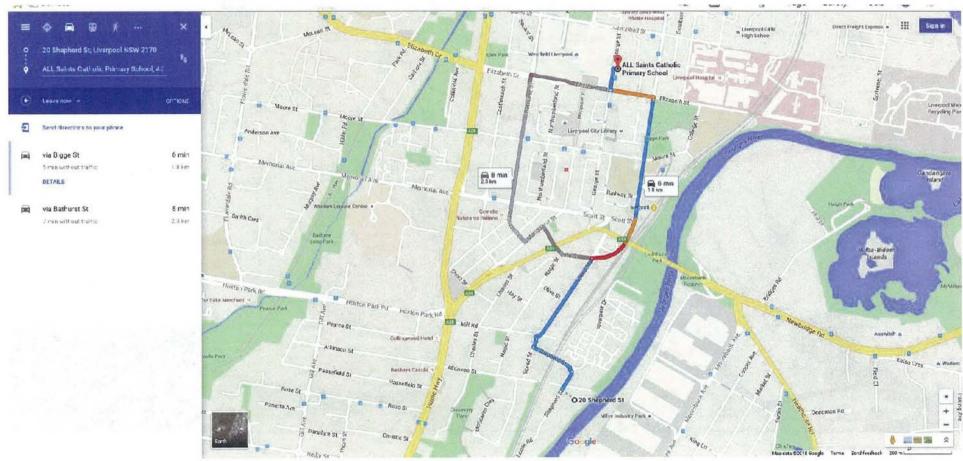


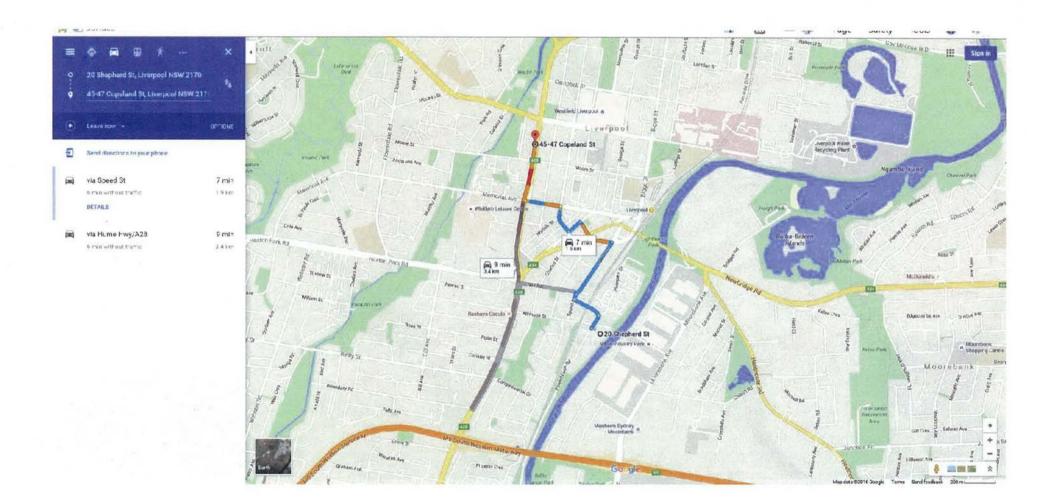


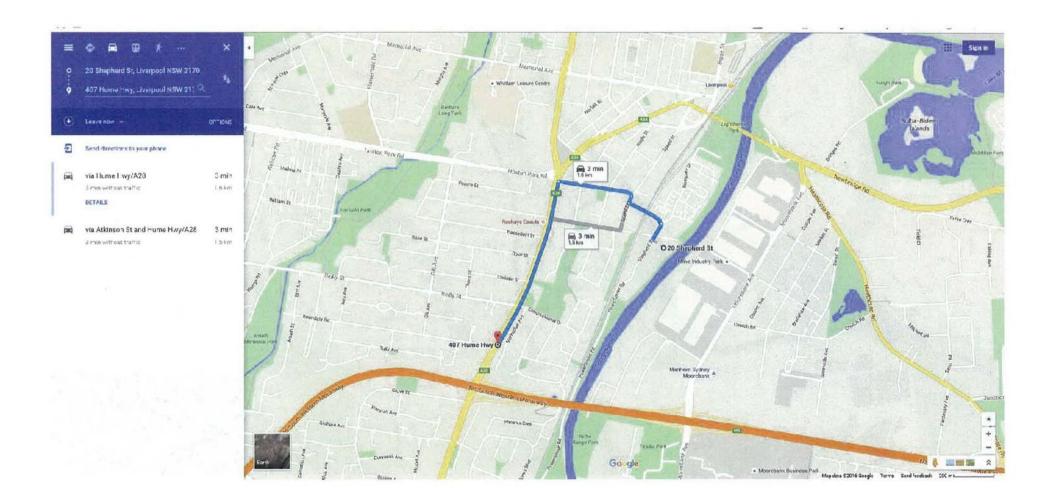


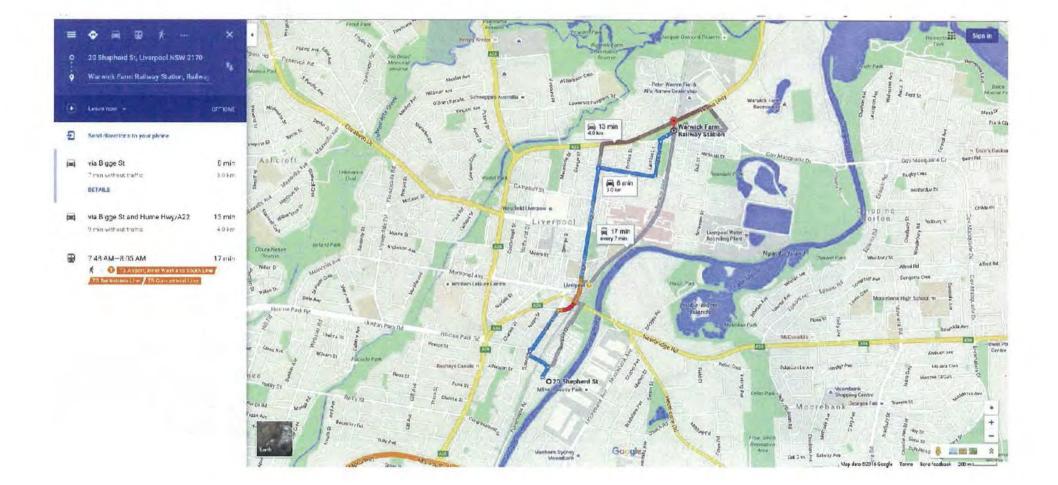

.....

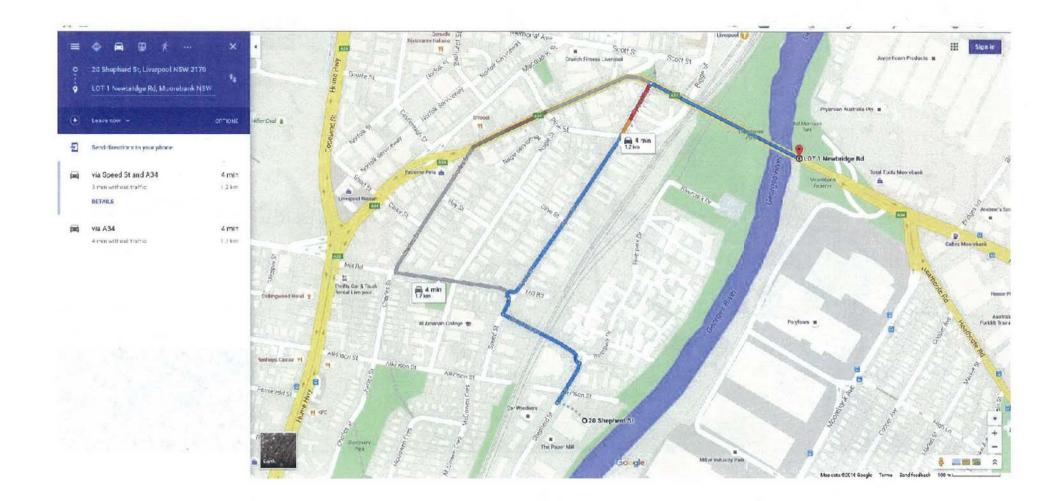


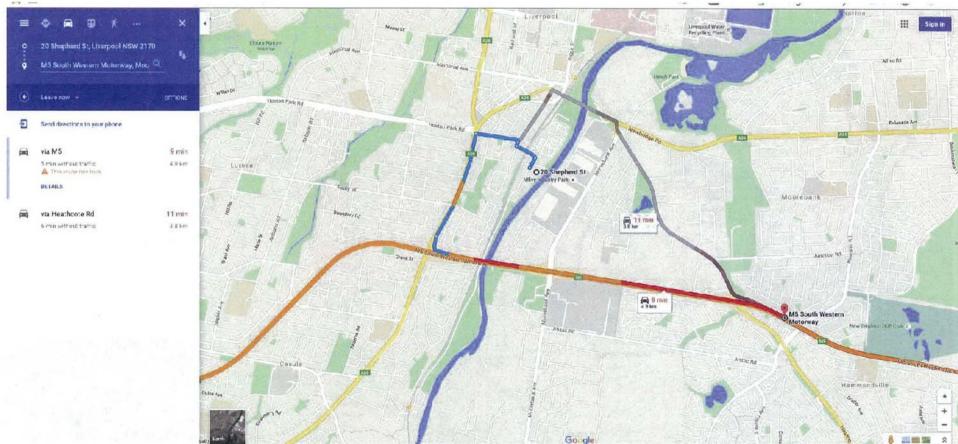

.

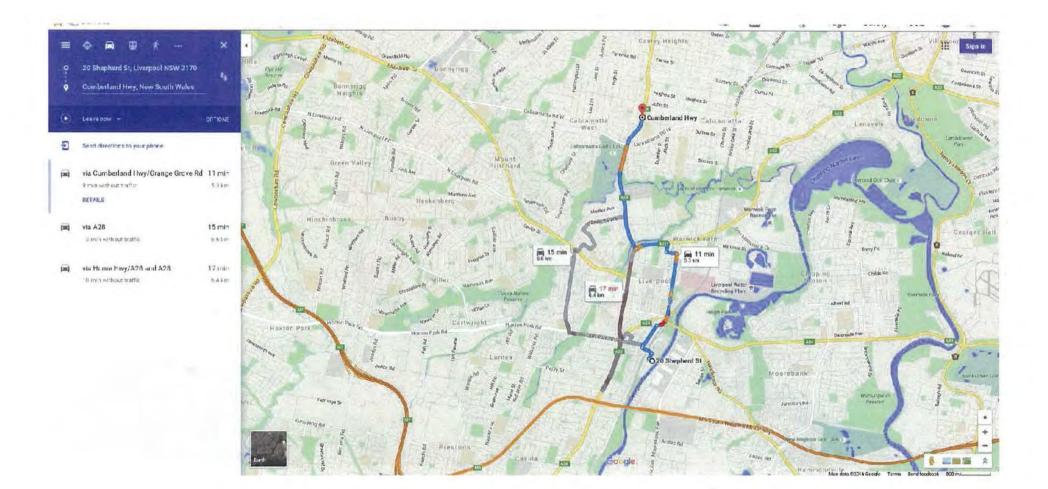



--- --- The date


-

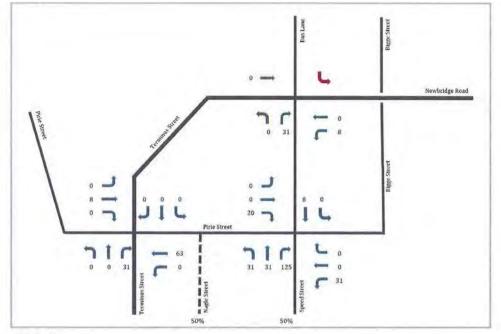


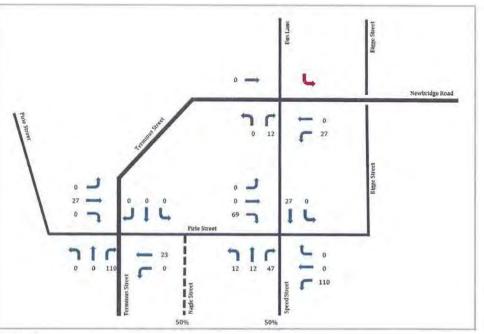




Google

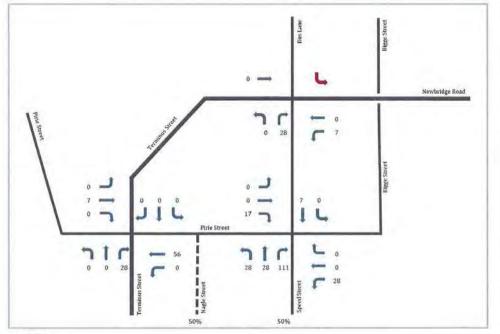
Maa data 22016 Geogle

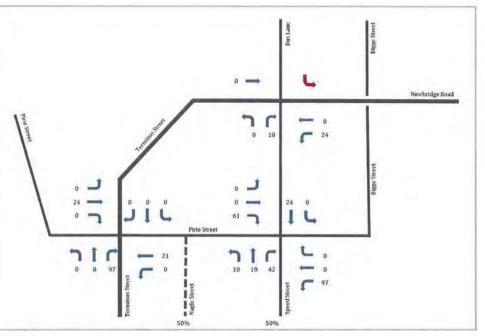

Terre Bondfoodbook 200 m L



APPENDIX F

Forecast Shepherd Street Precinct Traffic Generation


AM Peak

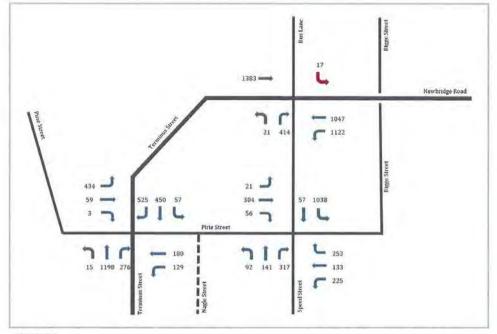


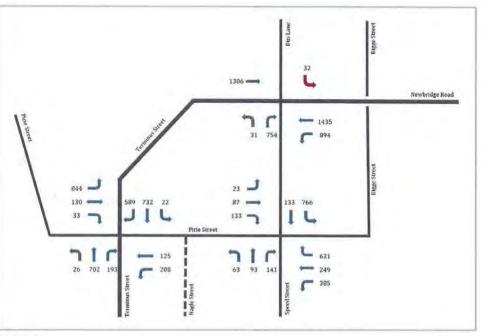
Forecast Development Traffic Volumes (1,500 Apartments) 2026 Design Horizon **Project:** 15-006

Date: 10/06/2016

INRORDS:GROUP

Date: 10/06/2016

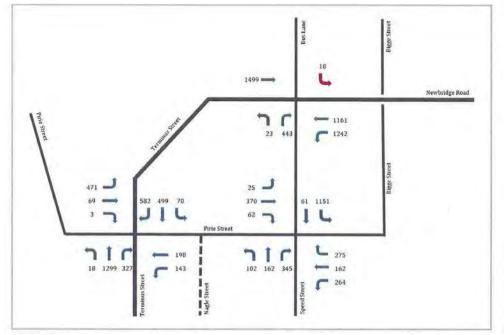

AM Peak



Forecast Development Traffic Volumes (1,500 Apartments) 2036 Design Horizon Project: 15-006

APPENDIX G

2026 and 2036 Design Traffic Volumes (Background + Development Traffic)

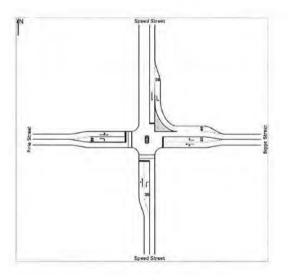


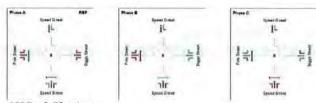
Date: 10/06/2016

AM Peak

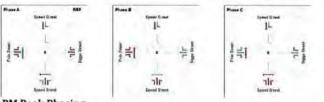
Design Traffic Volumes 2026 Design Horizon Project: 15-006

AM Peak




Design Traffic Volumes 2036 Design Horizon Project: 15-006

Date: 10/06/2016


APPENDIX H

SIDRA Model Results - Speed Street / Bigge Street / Pirie Street intersection (Background Traffic only, Existing Intersection Configuration)

Signals - Fixed Time Isolated Cycle Time = 40 seconds (Optimum Cycle Time - Minimum Delay)

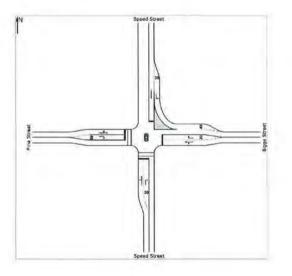
PM Peak Phasing

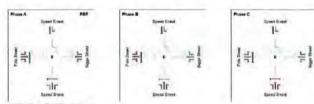
Signals - Fixed Time Isolated Cycle Time = 45 seconds (Optimum Cycle Time - Minimum Delay)

Project: 15-006

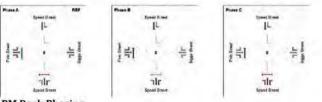
AM Peak Hour

Move	ment Po	erformance	e - Ve	hicles							
Mov ID	OD Mov	Demand Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
100	Inisa	veh/h	56	v/c	sec	Continos	ven	m	otticaco	per veh	km/h
South	Speed	States and a strength of		1/2	300		190		-	per part	
1	L2	50	5.0	0.512	23.1	LOS B	2.8	20.1	0.96	0.77	34.
2	T1	90		0.512	18.5	LOS B	2.8	20.1	0.96	0.77	34.
3	R2	157	5.0		23.6	LOS B	3.2	23.2	0.98	0.82	37.
Appro	ach	297	5.0	0.583	22.0	LOS B	3.2	23,2	0.97	0.80	36.
East: I	Bigge St	reet									
4	L2	159	5.0	0.270	9.8	LOS A	2.8	20.6	0.56	0.61	44.0
5	T1	109	5.0	0.270	5.2	LOS A	2.8	20.6	0.56	0.61	42.
6	R2	213	5.0	0.418	12.1	LOS A	2.3	17.2	0.86	0.77	38.
Appro	ach	481	5.0	0.418	9.8	LOS A	2.8	20.6	0.69	0.68	41.
North:	Speed S	Street									
7	L2	807	5.0	0.457	4.4	LOS A	0.0	0.0	0.00	0.46	46.4
8	T1	38	5.0	0.136	17.0	LOS B	0.7	5.0	0.90	0.66	36.
Approa	ach	845	5.0	0.457	5.0	LOS A	0.7	5.0	0.04	0.47	45.
West	Pirie Str	eet									
10	L2	17	5.0	0.574	19.7	LOS B	4.9	35.5	0.92	0.78	26.
11	T1	249	5.0	0.574	15.1	LOS B	4.9	35.5	0.92	0.78	37.
12	R2	30	5.0	0.080	17.6	LOS B	0.5	3.4	0.79	0.69	35.
Approa	ach	296	5.0	0.574	15.7	LOS B	4.9	35.5	0.91	0.77	37.3
All Vel	hicles	1919	5.0	0.583	10.5	LOS A	4.9	35.5	0.48	0.62	41.3


PM Peak Hour


Mov	ÓD	erformanc Demand	ALC: NO.	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Sain	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh	m		per veh	km/h
South	Speed	Street		100		1000					
1	L2	42	5.0	0.449	25.7	LOS B	2.4	17.6	0.96	0.76	33.3
2	T1	67	5.0	0.449	21.1	LOS B	2.4	17.6	0.96	0.76	32.8
3	R2	77	5.0	0.376	26.5	LOS B	1.7	12.6	0.97	0.75	36.2
Appro	ach	186	5.0	0.449	24.4	LOS B	2.4	17.6	0.96	0.75	34.6
East:	Bigge Str	reet									
4	L2	226	5.0	0.396	9.8	LOS A	5.0	36.8	0.56	0.61	44.8
5	T1	204	5.0	0.396	5.2	LOS A	5.0	36.8	0.56	0.61	43.2
6	R2	500	5.0	0.634	11.4	LOS A	6.4	47.0	0.84	0.81	38.8
Appro	ach	930	5.0	0.634	9.6	LOS A	6.4	47.0	0.71	0.72	41.6
North:	Speed S	Street									
7	L2	611	5.0	0.346	4.4	LOS A	0.0	0.0	0.00	0.46	46.4
8	T1	84	5.0	0.339	20.7	LOS B	1.8	13.2	0.95	0.72	33.9
Appro	ach	695	5.0	0.346	6.4	LOS A	1.8	13.2	0.11	0.50	44.5
West:	Pirie Stre	eet									
10	L2	19	5.0	0.367	25.4	LOS B	2.0	14.3	0.95	0.74	22.4
11	T1	71	5.0	0.367	20.8	LOS B	2.0	14.3	0.95	0.74	34.4
12	R2	53	5.0	0.232	25.0	LOS B	1,1	8.2	0.93	0.73	32.2
Appro	ach	143	5.0	0.367	22.9	LOS B	2.0	14.3	0.94	0.73	32.5
All Vel	hicles	1954	5.0	0.634	10.9	LOS A	6,4	47.0	0.54	0.64	40.8

2016 Existing Volumes


Speed Street / Bigge Street / Pirie Street Intersection Performance

Date: 10/06/2016

Signals - Fixed Time Isolated Cycle Time = 40 seconds (Optimum Cycle Time - Minimum Delay)

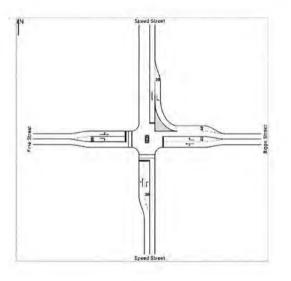
PM Peak Phasing

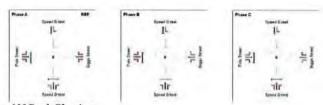
Signals - Fixed Time Isolated Cycle Time = 60 seconds (Optimum Cycle Time - Minimum Delay)

AM Peak Hour

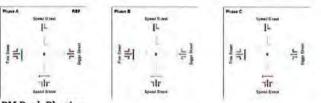
Move	ment P	erformance	- Ve	hicles		-			-		
Mov	OD	Demand i		Deg.	Average	Leval of	95% Back	of Queue	Prop	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh			per veh	km/h
South	Speed	Street	100		-						
1	L2	61	5.0	0.625	24.0	LOS B	3.5	25.6	0.98	0.84	34.
2	T1	110	5.0	0.625	19.4	LOS B	3.5	25.6	0.98	0.84	33.
3	R2	191	5.0	0.730	25,5	LOS B	4.2	30.3	1.00	0.93	36.
Appro	ach	362	5.0	0.730	23.4	LOS B	4.2	30.3	0.99	0.89	35.
East:	Bigge St	reet									
4	L2	194	5.0	0.330	10.1	LOS A	3.6	26.2	0.58	0.63	44.
5	T1	133	5.0	0.330	5.5	LOS A	3.6	26.2	0.58	0.63	42.
6	R2	253	5.0	0.534	12.7	LOS A	2.9	21.0	0.91	0.79	37.
Appro	ach	580	5.0	0.534	10.2	LOS A	3.6	26.2	0.73	0.70	41.
North:	Speed	Street									
7	12	1038	5.0	0.588	4.4	LOS A	0.0	0.0	0.00	0,46	46.
8	T1	49	5.0	0.176	17.2	LOS B	0.9	6.6	0,91	0.67	35.
Appro	ach	1087	5.0	0.588	5.0	LOS A	0.9	6.6	0.04	0.47	45.
West:	Pirie Str	eet									
10	L2	21	5.0	0.702	21.5	LOS B	6.5	47.4	0.96	0.89	25.
11	T1	304	5.0	0.702	16.9	LOS B	6.5	47.4	0.96	0.89	36.
12	R2	37	5.0	0.103	17.8	LOS B	0,6	4.3	0.80	0.70	35.
Appro	ach	362	5.0	0.702	17.3	LOS B	6.5	47.4	0.95	0.87	36.
All Ve	hicles	2391	5.0	0.730	10.9	LOS A	6.5	47.4	0.49	0.65	41.

PM Peak Hour


Mov	OD	Demand	-lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		ven/h		V/c	sec		veh			per ven	km/n
South:	Speed	Street				1000					
1	L2	51	5.0	0.730	37.0	LOS C	4.3	31.3	1.00	0.90	28.8
2	T1	82	5.0	0.730	32.4	LOS C	4.3	31.3	1.00	0.90	28.0
3	R2	94	5.0	0.752	39.6	LOS C	3.1	22.7	1.00	0.88	32.0
Approa	ich	227	5.0	0.752	36.4	LOS C	4.3	31.3	1.00	0.89	30.2
East: E	Bigge St	reet									
4	L2	275	5.0	0.414	8.7	LOS A	6.5	47.3	0.45	0.56	45.4
5	T1	249	5.0	0.414	4.1	LOS A	6.5	47.3	0.45	0.56	44.0
6	R2	631	5.0	0.795	15.2	LOS B	11.4	83.4	0.72	0.84	36.4
Approa	ch	1155	5.0	0.795	11.2	LOS A	11.4	83.4	0.60	0.71	40.5
North:	Speed S	Street									
7	L2	766	5.0	0.434	4.4	LOS A	0.0	0.0	0.00	0.46	46.4
8	T1	105	5.0	0.565	30.3	LOS C	3.2	23.4	1.00	0.80	29.5
Approa	ich	871	5.0	0.565	7.5	LOS A	3.2	23.4	0.12	0.50	43.4
West	Pirie Str	eet									
10	L2	23	5.0	0.598	35,3	LOS C	3.4	24.8	1.00	0.82	18.0
11	T1	87	5.0	0.598	30.7	LOS C	3.4	24.8	1.00	0.82	30.1
12	R2	65	5.0	0.392	34.3	LOS C	1.9	14.2	0.97	0.75	28.6
Approa	ich	175	5.0	0.598	32.6	LOS C	3.4	24.8	0.99	0.79	28.5
All Veh	icles	2428	5.0	0.795	13.8	LOS A	11.4	83.4	0.49	0.66	38.9


2026 Forecast Background Volumes

Speed Street / Bigge Street / Pirie Street Intersection Performance


Date: 10/06/2016

Project: 15-006

Signals - Fixed Time Isolated Cycle Time = 50 seconds (Optimum Cycle Time - Minimum Delay)

PM Peak Phasing

Signals - Fixed Time Isolated Cycle Time = 75 seconds (Optimum Cycle Time - Minimum Delay)

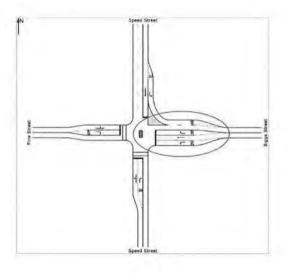
Project: 15-006

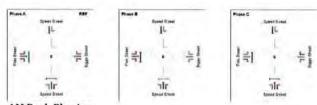
AM Peak Hour

Move	ment P	erformance	e - Ve	hicles				-		-	
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Quaue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh	m		per veh	km/h
South	Speed	Street						1.00			
1	L2	74	5.0	0.518	24.1	LOS B	4.7	34.4	0.93	0.77	34.1
2	T1	134	5.0	0.518	19.5	LOS B	4.7	34.4	0.93	0.77	33.7
3	R2	233	5.0	0.704	27.5	LOS B	5,9	43.4	0.98	0.89	35.8
Approa	ach	441	5.0	0.704	24.5	LOS B	5.9	43.4	0.96	0.84	35.
East: I	Bigge St	reet									
4	L2	236	5.0	0.409	12.0	LOS A	5.8	42.5	0.63	0.66	43.5
5	T1	162	5.0	0.409	7.4	LOS A	5.8	42.5	0.63	0.66	41.3
6	R2	275	5.0	0.669	16.2	LOS B	4.3	31.1	0.95	0.85	35.8
Approa	ach	673	5.0	0.669	12.6	LOS A	5.8	42.5	0.76	0.74	40.3
North:	Speed S	Street									
7	L2	1151	5.0	0.652	4.4	LOS A	0.0	0.0	0.00	0.46	46.3
8	T1	54	5.0	0.132	17.5	LOS B	1.1	8.0	0.84	0.63	35.7
Approa	ach	1205	5.0	0.652	5.0	LOS A	1.1	8.0	0.04	0.47	45.7
West:	Piria Str	eet									
10	L2	25	5.0	0.711	23.4	LOS B	9.4	68.6	0.95	0.88	23.9
11	T1	370	5.0	0.711	18.8	LOS B	9.4	68.6	0.95	0.88	35.7
12	R2	45	5.0	0.124	19.0	LOS B	0.8	6.1	0.76	0.71	35.1
Approa	ach	440	5.0	0,711	19.1	LOS B	9.4	68.6	0.93	0.86	35.3
All Vel	hicles	2759	5,0	0.711	12.2	LOS A	9,4	68.6	0,50	0.66	40.2

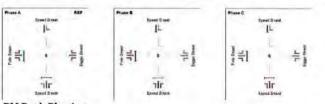
PM Peak Hour

Mov	00	Demand	Flows	Deg.	Average	Level of	,95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Spead
		veh/h	56	v/c	sec		veh	m		per veh.	km/h
South:	Speed :	Street				100					
1	L2	62	5.0	0.834	47.2	LOS D	6.7	49.3	1.00	1.01	25.6
2	T1	100	5.0	0.834	42.6	LOS D	6.7	49.3	1.00	1.01	24.8
3	R2	114	5.0	1.032	127.4	LOS F	8.8	64.1	1.00	1.60	18.1
Approa	ich	276	5.0	1.032	78.7	LOS F	8.8	64.1	1.00	1.25	20.8
East: E	Bigge St	reet									
4	L2	336	5.0	0.825	17.9	LOS B	14.2	103.8	0.45	0.65	40.8
5	T1	303	5.0	0.825	13.3	LOS A	14.2	103.8	0.45	0.65	37.7
6	R2	708	5.0	0.964	63.0	LOS E	35.1	255.9	0.66	1.11	20.2
Approa	ch	1347	5.0	0.964	40.6	LOS C	35.1	255.9	0.56	0.89	27.8
North:	Speed S	Street									
7	L2	863	5.0	0.489	4.4	LOS A	0.0	0.0	0.00	0.46	46.4
8	T1.	119	5.0	0.600	37.1	LOS C	4.5	32.7	1.00	0.81	27.0
Approa	ich	982	5.0	0.600	8.4	LOS A	4.5	32.7	0.12	0.51	42.7
West:	Pirie Str	eet									
10	L2	28	5.0	0.911	54,7	LOS D	6.1	44.4	1.00	1.15	13.1
11	T1	106	5.0	0.911	50,1	LOS D	6,1	44.4	1.00	1.15	24.2
12	R2	79	5.0	0.618	44.6	LOS D	3.1	22.7	1.00	0.82	25.5
Approa	ich	213	5.0	0.911	48.7	LOS D	6,1	44.4	1.00	1.03	23.6
All Ver	icles	2818	5.0	1.032	33.7	LOSC	35,1	255.9	0.48	0.80	29.6


2036 Forecast Background Volumes


Speed Street / Bigge Street / Pirie Street Intersection Performance

Date: 10/06/2016


APPENDIX I

SIDRA Model Results - Speed Street / Bigge Street / Pirie Street intersection (Background Traffic only, Upgraded Intersection Configuration)

Signals - Fixed Time Isolated Cycle Time = 50 seconds (Optimum Cycle Time - Minimum Delay)

PM Peak Phasing

Signals - Fixed Time Isolated Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

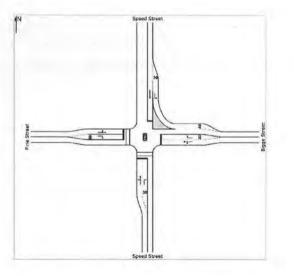
Project: 15-006

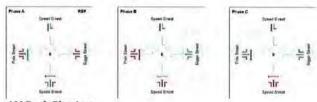
AM Peak Hour

	the second s	erformance	-			No.			-		
Mov	OD	Demand F		Deg	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	*	v/c	Sec		veh	m		per veh	km/n
South	Speed	Street									
1	L2	74	5.0	0.518	24.1	LOS B	4.7	34.4	0.93	0.77	34.2
2	T1	134	5.0	0.518	19.5	LOS B	4.7	34.4	0.93	0.77	33.7
3	R2	233	5.0	0.704	27.5	LOS B	5.9	43.4	0.98	0.90	36.0
Аррго	ach	441	5.0	0.704	24.5	LOS B	5.9	43.4	0.96	0.84	35.
East:	Bigge St	reet									
4	L2	236	5.0	0.248	11.3	LOS A	3.1	22.6	0.56	0.70	42.9
5	T1	162	5.0	0.161	6.3	LOS A	2.0	14.6	0.53	0.44	44.3
6	R2	275	5.0	0.669	16.2	LOS B	4.3	31.1	0.95	0.85	35.8
Appro	ach	673	5.0	0.669	12.1	LOS A	4.3	31.1	0.72	0.70	40.5
North:	Speed S	Street									
7	L2	1151	5.0	0.652	4.4	LOS A	0.0	0.0	0.00	0.46	46.3
8	T1	54	5.0	0.132	17.5	LOS B	1.1	8.0	0.84	0.63	35.7
Appro	ach	1205	5.0	0.652	5.0	LOS A	1.1	8.0	0.04	0.47	45.7
West:	Pirie Str	eet									
10	L2	25	5.0	0.711	23.4	LOS B	9.4	68.6	0.95	0.88	23.9
11	T1	370	5.0	0.711	18.8	LOS B	9.4	68.6	0.95	0.88	35.7
12	R2	45	5.0	0.122	18.9	LOS B	0.8	6.1	0.76	0.71	35.1
Appro	ach	440	5.0	0.711	19.1	LOS B	9.4	68.6	0.93	0.86	35.3
All Ve	hicles	2759	5.0	0.711	12.1	LOS A	9.4	68.6	0.49	0.65	40.3

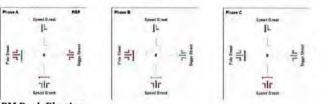
PM Peak Hour

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mav	Tolal	HV	Saln	Delay	Service	Vehicles	Distance	Quoued	Stop Rate	Speed
		veh/h		v/c	Sec		veh	m		per veh	km/h
South:	Speed !	Street		-			-	-			
1	L2	62	5.0	0.692	39.2	LOS C	5.8	42.3	1.00	0.87	28.1
2	T1	100	5.0	0.692	34.6	LOSC	5.8	42.3	1.00	0.87	27.3
3	R2	114	5.0	0.799	45.0	LOS D	4.4	32.1	1.00	0.94	30.7
Approa	ich	276	5.0	0.799	39.9	LOS C	5.8	42.3	1.00	0.90	29.2
East: E	Bigge Str	reet									
4	L2	336	5.0	0.272	8.8	LOS A	4.2	30.8	0.40	0.66	44.2
5	T1	303	5.0	0.233	4.0	LOS A	3.7	26.8	0.38	0.33	46.1
6	R2	708	5.0	0.808	16.4	LOS B	15.6	113.7	0.73	0.84	35.6
Approa	ich	1347	5.0	0.808	11.7	LOS A	15.6	113.7	0.57	0.68	40.3
North:	Speed 5	Street									
7	L2	863	5.0	0.489	4.4	LOS A	0.0	0.0	0.00	0.46	46.4
8	T1	119	5.0	0.498	32.4	LOS C	4.0	29.3	0.97	0.77	28.7
Approa	ich	982	5.0	0.498	7.8	LOS A	4.0	29.3	0.12	0.50	43.2
West:	Pirie Str	eet									
10	L2	28	5.0	0.850	46.6	LOS D	5.3	39.0	1.00	1.03	14.8
11	T1	106	5.0	0,850	42.0	LOS C	5.3	39.0	1.00	1.03	26.4
12	R2	79	5.0	0.566	41.1	LOS C	2.9	20.9	1.00	0.79	26.4
Approa	ich	213	5.0	0.850	42.3	LOS C	5.3	39.0	1.00	0.94	25.3
All Vet	icles	2818	5.0	0.850	15.4	LOS B	15.6	113.7	0.49	0.66	38.0


2036 Forecast Background Volumes


Speed Street / Bigge Street / Pirie Street Intersection Performance

Date: 10/06/2016


APPENDIX J

SIDRA Model Results - Speed Street / Bigge Street / Pirie Street intersection (With Development Traffic)

Signals - Fixed Time Isolated Cycle Time = 50 seconds (Optimum Cycle Time - Minimum Delay)

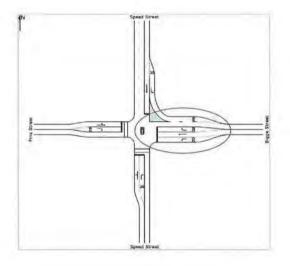
PM Peak Phasing

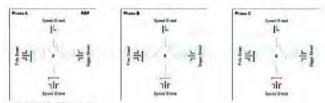
Signals - Fixed Time Isolated Cycle Time = 50 seconds (Optimum Cycle Time - Minimum Delay)

Project: 15-006

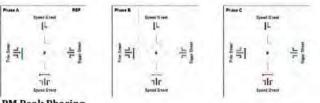
AM Peak Hour

Move	ment P	erformance	- Ve	hicles				-	-	-	
Mov	OD	Demand R	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satr	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		٧/c	Sec		veh	m		per veh	km/h
South	Speed	Street				122		1 A A	-		
1	L2	92	5.0	0.457	21.3	LOS B	4.9	35.7	0.87	0.75	35.5
2	T1	141	5.0	0.457	16.7	LOS B	4.9	35.7	0.87	0.75	35.1
3	R2	317	5.0	0.777	27.6	LOS B	8.4	61.5	0,98	0.95	35.8
Appro	ach	550	5.0	0.777	23.7	LOS B	8.4	61.5	0.94	0.87	35.6
East: I	Bigge St	reet									
4	L2	225	5.0	0.415	13.9	LOS A	5.8	42.2	0.69	0.70	42.5
5	T1	133	5.0	0.415	9.3	LOS A	5.8	42.2	0.69	0.70	39.9
6	R2	253	5.0	0.657	17.4	LOS B	4.3	31.4	0.97	0.84	35.1
Appro	ach	611	5.0	0.657	14.3	LOS A	5.8	42.2	0.81	0.76	39.3
North:	Speed S	Street									
7	L2	1038	5.0	0.588	4.4	LOS A	0.0	0.0	0.00	0.46	46.3
8	T1	57	5.0	0.109	14.8	LOS B	1.1	7.7	0.77	0.59	37.3
Appro	ach	1095	5.0	0.588	5.0	LOS A	1.1	7.7	0.04	0.47	45.8
West	Pirie Str	eet									
10	L2	21	5.0	0.731	26.2	LOS B	8.2	59.7	0.98	0.92	22.3
11	T1	304	5.0	0.731	21.6	LOS B	8.2	59.7	0.98	0.92	34.3
12	R2	56	5.0	0.175	21.8	LOS B	1.1	8.4	0.83	0.73	33.7
Appro	ach	381	5.0	0.731	21.9	LOS B	8.2	59,7	0.95	0.89	33.8
All Vel	nicles	2637	5.0	0.777	13.5	LOS A	8.4	61.5	0.54	0.68	39.5


PM Peak Hour


Μον	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		vsh/h		v/c	Sec		veh	m		per veh	km/h
South:	Speed	Street	1.1	1.5	-						
1	L2	63	5.0	0.714	30.9	LOS C	4.2	30.5	1.00	0.90	31.0
2	T1	93	5.0	0.714	26.3	LOS B	4.2	30.5	1.00	0.90	30.4
3	R2	141	5.0	0.963	47.7	LOS D	4.9	36.0	1.00	1.37	29.9
Approa	ach	297	5.0	0,963	37.5	LOS C	4.9	36,0	1.00	1.12	30.2
East: 6	Bigge St	reet									
4	L2	385	5.0	0.879	26.5	LOS B	16.1	117.5	0.60	0.93	37.1
5	T1	249	5.0	0.879	21.9	LOS B	16.1	117.5	0.60	0.93	33.0
6	R2	631	5.0	0.952	46.3	LOS D	22.5	163,9	0.85	1.25	23.9
Approa	ach	1265	5.0	0.952	35.5	LOS C	22.5	163.9	0.72	1.09	29.8
North:	Speed S	Street									
7	L2	766	5.0	0.434	4.4	LOS A	0.0	0.0	0.00	0.46	46.4
8	T1	133	5.0	0.596	24.8	LOS B	3.4	24.8	0.99	0.82	31.8
Approa	ach	899	5.0	0.596	7.4	LOS A	3.4	24.8	0.15	0.52	43.5
West:	Pirie Str	eet									
10	L2	23	5.0	0.499	28.7	LOS C	2.7	20.0	0.98	0.76	20.7
11	T1	87	5.0	0,499	24.1	LOS B	2.7	20.0	0.98	0.76	32.8
12	R2	133	5.0	0.692	30.9	LOSC	3.6	26.0	1.00	0.89	29.8
Approa	ach	243	5.0	0.692	28.3	LOS B	3.6	26.0	0.99	0.83	30.4
All Vet	nicles	2704	5.0	0.963	25.7	LOS B	22.5	163.9	0.59	0.88	33.0

2026 With Development


Speed Street / Bigge Street / Pirie Street Intersection Performance

Date: 10/06/2016

Signals - Fixed Time Isolated Cycle Time = 50 seconds (Optimum Cycle Time - Minimum Delay)

PM Peak Phasing

Signals - Fixed Time Isolated Cycle Time = 60 seconds (Optimum Cycle Time - Minimum Delay)

AM Peak Hour

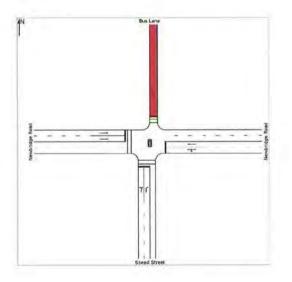
41.3 41.3	Prop Queued 0.89	Stop Rate per veh	Speed km/h
41.3			km/n
		0.77	-44
		0.77	
41.3		0.77	35.3
	0.89	0.77	35.0
89.7	1.00	1.27	31.4
89.7	0.95	1.05	32.5
29.3	0.65	0.73	41.9
16.6	0.60	0.49	42.0
36.4	1.00	0.90	34.
36.4	0.78	0.74	39.3
0.0	0,00	0.46	46.3
8.3	0.78	0.59	37.4
8.3	0.04	0.47	45.8
90.7	1.00	1.20	18.3
90.7	1.00	1.20	30.3
9.4	0.83	0.73	33.6
90.7	0.98	1.13	30.3
90.7	0.54	0.75	37.1
	89.7 89.7 29.3 16.6 36.4 36.4 36.4 0.0 8.3 8.3 90.7 90.7 90.7 90.7	89.7 1.00 89.7 0.95 29.3 0.65 16.6 0.60 36.4 1.00 36.4 0.78 0.0 0.00 8.3 0.78 8.3 0.04 90.7 1.00 9.4 0.83 90.7 0.98	89.7 1.00 1.27 89.7 0.95 1.05 29.3 0.65 0.73 16.6 0.60 0.49 36.4 0.78 0.74 0.0 0.00 0.46 8.3 0.78 0.59 8.3 0.04 0.47 90.7 1.00 1.20 9.4 0.83 0.73 90.7 0.98 1.13

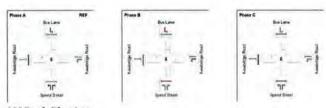
PM Peak Hour

Mov ID	OD Mov	Demand I Total	Flows HV	Deg Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/n		v/c	sec		veh	m		per veh	km/h
South:	Speed a	Street									
1	L2	73	5.0	0.603	31.3	LOS C	5.3	38.8	0.97	0.82	30.9
2	T1	110	5.0	0.603	26.7	LOS B	5.3	38.8	0.97	0.82	30.3
3	R2	156	5.0	0.843	40,4	LOS C	5.4	39.1	1.00	1.03	32.0
Approa	ich	339	5.0	0.843	34.0	LOS C	5,4	39.1	0.99	0.92	31.3
East: E	Bigge St	reet									
4	L2	433	5.0	0.455	10.4	LOS A	6.2	45.1	0.52	0.71	43.4
5	T1	303	5.0	0.257	5.2	LOS A	3.9	28.3	0.47	0.40	45.1
6	R2	708	5.0	0.947	46.0	LOS D	28.2	206.0	0.88	1.17	24.0
Approa	ch	1444	5.0	0.947	26.7	LOS B	28.2	206.0	0.69	0.87	33.0
North:	Speed S	Street									
7	L2	863	5.0	0.489	4.4	LOS A	0.0	0.0	0.00	0.46	46.4
8	T1	143	5.0	0.461	25.6	LOS B	4.0	29.1	0.95	0.76	31.5
Approa	ich	1006	5.0	0.489	7.4	LOS A	4.0	29.1	0.13	0.51	43.5
West:	Pirie Str	eet									
10	L2	28	5.0	0.729	37.0	LOS C	4.3	31.5	1.00	0.90	17.5
11	T1	106	5.0	0.729	32.3	LOS C	4.3	31.5	1.00	0.90	29.5
12	R2	140	5.0	0.884	44.0	LOS D	5.1	37.3	1.00	1.12	25.6
Approa	ach	274	5.0	0.884	38.8	LOS C	5.1	37.3	1.00	1.01	26.0
All Veh	icles	3063	5.0	0.947	22.3	LOS B	28.2	206.0	0.57	0.77	34.5

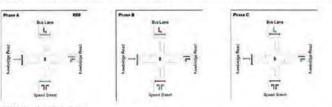
2036 With Development

Speed Street / Bigge Street / Pirie Street Intersection Performance


Date: 10/06/2016


INROADS:GROUP

Project: 15-006


APPENDIX K

SIDRA Model Results - Newbridge Road / Speed Street intersection (Background Traffic only, Existing Intersection Configuration)

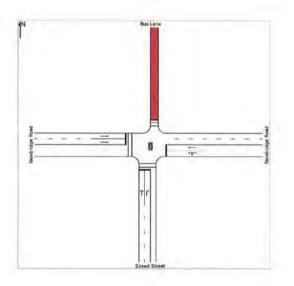
Signals - Fixed Time Isolated Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

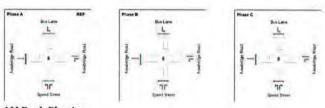
PM Peak Phasing

Signals - Fixed Time Isolated Cycle Time = 110 seconds (Optimum Cycle Time - Minimum Delay)

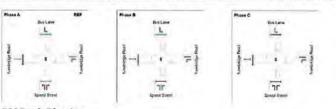
AM Peak Hour

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh			per veh	km/h
South:	Speed	Street	100	1.11							
1	L2	16	5.0	0.825	44.0	LOS D	6.6	47.9	1.00	0.99	17.4
3	R2	322	5.0	0.825	44.0	LOS D	6,6	47.9	1.00	0,99	26.0
Approa	ach	338	5.0	0.825	44.0	LOS D	6.6	47.9	1.00	0,99	25.6
East: I	Newbridg	e Road									
4	L2	866	5.0	0.728	20.8	LOS B	28.1	205.0	0.95	0.90	37.2
5	T1	814	5.0	0.728	13.3	LOS A	28.1	205.0	0.83	0.75	45.8
Approa	ach	1680	5.0	0.728	17.1	LOS B	28.1	205.0	0.89	0.83	41.3
North:	Bus Lar	e									
7	L2	14	100.0	0.142	40.1	LOS C	0.5	6.3	0.95	0.69	27.6
Appro	ach	14	100.0	0.142	40.1	LOS C	0.5	6.3	0.95	0.69	27.6
West	Newbrid	ge Road									
11	T1	1162	5.0	0.567	11.4	LOS A	13.1	95.9	0.71	0.63	47.6
Appro	ach	1162	5.0	0.567	11.4	LOS A	13.1	95.9	0.71	0.63	47,6
All Vel	hicles	3194	54	0.825	18,0	LOS B	28.1	205.0	0.84	0.77	41.1


PM Peak Hour


Mov	OD	Deman	and the second se	Deg:	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh	m		per veh	km/h
South:	Speed S	Street						-	10.12		
1	L2	25	5.0	0.855	59.3	LOS E	18.1	131.9	1.00	0.96	14.2
3	R2	588	5.0	0.855	59.3	LOS E	18.1	131.9	1.00	0,96	21.9
Approa	ach	613	5.0	0.855	59.3	LOS E	18.1	131.9	1.00	0.96	21.7
East: I	Vewbridg	e Road							100		
4	L2	691	5.0	0.852	28.8	LOSC	40,3	294.5	0.84	0.88	33.1
5	T1	1144	5.0	0.852	23.8	LOS B	44.2	322.8	0.89	0.87	38.5
Approa	ach	1835	5.0	0.852	25.7	LOS B	44.2	322.8	0.87	0.87	36.5
North:	Bus Lan	e									
7	L2	25	100.0	0.398	65.1	LOS E	1.4	18.7	1.00	0.72	21,1
Approa	ach	25	100.0	0.398	65.1	LOS E	1.4	18.7	1.00	0.72	21.1
West:	Newbrid	ge Road									
11	T1	1035	5.0	0.471	14.1	LOS A	15.8	115.1	0.62	0.55	45.5
Approa	ach	1035	5.0	0.471	14.1	LOS A	15.8	115.1	0.62	0.55	45.5
All Vet	niclas	3508	57	0.855	28.4	LOS B	44.2	322.8	0.82	0.79	34.9

2016 Existing Volumes Newbridge Road / Speed Street Intersection Performance


Date: 10/06/2016

Project: 15-006

Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

PM Peak Phasing

Signals - Fixed Time Isolated Cycle Time = 150 seconds (Optimum Cycle Time - Minimum Delay)

AM Peak Hour

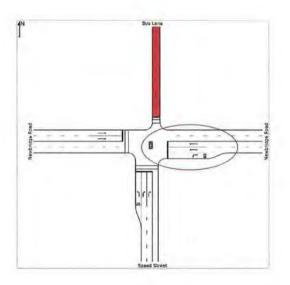
Move	ment Pe	erforman	ce - Ve	hicles				1	-		
Mov ID	OD Mov	Total	d Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	- %	v/c	Sec		veh	m	_	per veh	km/h
South	Speed a	Street									-
1	L2	21	5.0	0.867	60.7	LOS E	11.2	81.9	1.00	1.00	13.9
3	R2	383	5.0	0.867	60.7	LOS E	11.2	81.9	1.00	1.00	21.6
Appro	ach	404	5.0	0.867	60.7	LOS E	11.2	81.9	1.00	1.00	21.3
East: I	Newbridg	e Road									
4	L2	1114	5.0	0.818	8.9	LOS A	22.0	160.7	0.61	0.78	46.4
5	T1	1047	5.0	0.818	15.0	LOS B	36.7	267.6	0.81	0.78	44.5
Appro	ach	2161	5.0	0.818	11.8	LOS A	36.7	267.6	0.71	0.78	45.3
North:	Bus Lan	ne									
7	L2	17	100.0	0.246	58.3	LOS E	0.9	11.4	0.98	0.71	22.5
Appro	ach	17	100.0	0.246	58.3	LOS E	0.9	11.4	0.98	0.71	22.5
West:	Newbrid	ge Road									
11	T1	1383	5.0	0.581	11.5	LOS A	19.4	142.0	0.63	0.57	47.6
Appro	ach	1383	5.0	0.581	11.5	LOS A	19.4	142.0	0.63	0.57	47.6
All Vel	hicles	3965	5.4	0.867	16.9	LOS B	36.7	267.6	0.71	0.73	41.8

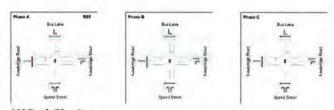
PM Peak Hour

Mov	OD	Demano	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vahicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	SEC:		veh			per veh	km/n
South	Speed S	Street	-		- 11	100	100				
1	L2	31	5.0	0.980	118.5	LOS F	40.1	293.0	1.00	1.14	8.2
3	R2	742	5.0	0.980	118.5	LOS F	40.1	293.0	1.00	1.13	13.7
Approa	ach	773	5.0	0.980	118.5	LOS F	40.1	293.0	1.00	1.13	13.5
East: I	Newbridg	e Road									
4	L2	867	5.0	0.972	67.9	LOS E	106.0	773.8	1.00	1.07	20.8
5	T1	1435	5.0	0.972	66.6	LOS E	108.7	793.7	1.00	1.13	23.7
Approa	ach	2302	5.0	0.972	67.1	LOS E	108.7	793.7	1.00	1.11	22.6
North:	Bus Lan	e									
7	L2	32	100.0	0.695	91.9	LOS F	2.6	34.0	1.00	0.85	16.8
Appro	ach	32	100.0	0.695	91.9	LOS F	2.6	34.0	1.00	0.85	16.8
West:	Newbrid	ge Road									
11	T1	1306	5.0	0.558	17.4	LOS B	27.1	198.0	0.63	0.57	43.0
Approa	ach	1306	5.0	0.558	17.4	LOS B	27.1	198.0	0.63	0.57	43.0
All Vel	hicles	4413	5.7	0.980	61.6	LOS E	108.7	793.7	0.89	0.95	23.7

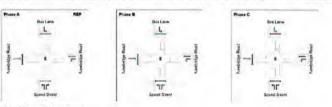
2026 Forecast Background Volumes

Newbridge Road / Speed Street Intersection Performance


Project: 15-006


Date: 10/06/2016

INADADS:GROUP


APPENDIX L

SIDRA Model Results - Newbridge Road / Speed Street intersection (Background Traffic only, Upgraded Intersection Configuration)

Signals - Fixed Time Isolated Cycle Time = 60 seconds (Optimum Cycle Time - Minimum Delay)

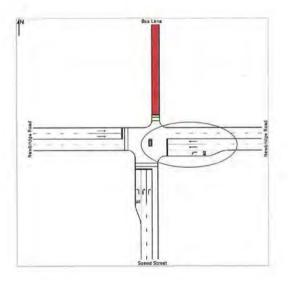
PM Peak Phasing

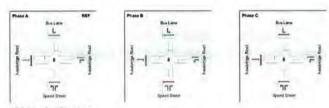
Signals - Fixed Time Isolated Cycle Time = 90 seconds (Optimum Cycle Time - Minimum Delay)

AM Peak Hour

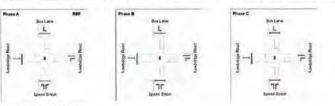
Move	ment P	erforman	ce - Ve	hicles	5	-	· · · · · · · · · · · · · · · · · · ·		-		
Mov ID	OD Mov	Deman Total	d Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	96		sec		veh			per veh	km/n
South	Speed	Street		Sec. 1	100	1000				-	
1	L2	21	5.0	0.070	28.1	LOS B	0.5	3.9	0.87	0.69	22.9
3	R2	383	5.0	0.643	31.9	LOS C	5.7	41.5	0.98	0.85	30.6
Appro	ach	404	5.0	0.643	31.7	LOS C	5.7	41.5	0.98	0.84	30.3
East	Newbridg	e Road									
4	L2	1114	5.0	0.777	8.3	LOS A	9.9	72.0	0.57	0.78	46.8
5	T1	1047	5.0	0.640	14.6	LOS B	12.2	89.3	0.84	0.74	45.1
Appro	ach	2161	5.0	0.777	11.3	LOS A	12.2	89.3	0.70	0.76	45.9
North:	Bus Lar	ne									
7	L2	17	100.0	0.148	34.3	LOS C	0.5	6.5	0.94	0.70	29.8
Appro	ach	17	100.0	0.148	34.3	LOS C	0.5	6.5	0.94	0.70	29.8
West:	Newbrid	ge Road									
11	T1	1383	5.0	0.845	23.4	LOS B	22.1	161.5	0.96	1.01	39.2
Appro	ach	1383	5.0	0.845	23.4	LOS B	22.1	161.5	0.96	1.01	39.2
All Vel	hicles	3965	5.4	0.845	17.7	LOS B	22.1	161.5	0.82	0.85	41.3

PM Peak Hour


Move	ment Pe	erforman	ce - Vel	hicles							
Μον	OD	Deman		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Ð	Mov	Total	HV	Satn	Delay	Service	Vahicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	50C		veh.			per veh	km/h
South	Speed S	Street	-			1000				-	
1	L2	31	5.0	0.074	33.7	LOS C	1.1	7.8	0.81	0.70	20.6
3	R2	742	5.0	0.912	58.2	LOS E	21.1	153.7	1.00	1.09	22.3
Appro	ach	773	5.0	0.912	57.3	LOS E	21.1	153.7	0.99	1.07	22.3
East:	Newbridg	e Road									
4	L2	867	5.0	0.558	6.4	LOS A	5.0	36.4	0.28	0.66	48.4
5	T1	1435	5.0	0.916	41.5	LOS C	46.7	341.1	0.91	1.07	31.0
Appro	ach	2302	5.0	0.916	28.3	LOS B	46.7	341.1	0.67	0.92	35.2
North:	Bus Lan	e									
7	L2	32	100.0	0.417	53.4	LOS D	1.5	19.6	1.00	0.73	23.7
Appro	ach	32	100.0	0.417	53.4	LOS D	1.5	19.6	1.00	0.73	23.1
West:	Newbrid	ge Road									
11	T1	1306	5,0	0.692	18.5	LOS B	21.9	159.6	0.82	0.74	42.3
Appro	ach	1306	5,0	0.692	18.5	LOS B	21.9	159,6	0.82	0.74	42,3
All Vel	hicles	4413	5.7	0.916	30.6	LOS C	46.7	341.1	0.77	0.89	33.9


2026 Forecast Background Volumes

Newbridge Road / Speed Street Intersection Performance


Project: 15-006

Date: 10/06/2016

Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

PM Peak Phasing

Signals - Fixed Time Isolated Cycle Time = 150 seconds (Optimum Cycle Time - Minimum Delay)

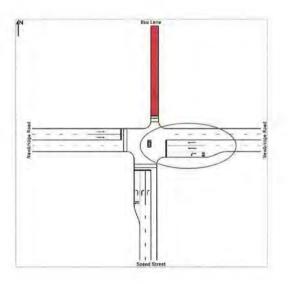
AM Peak Hour

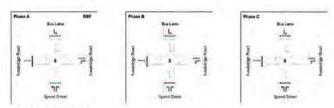
10000		erformand	Contraction of the local division of the loc	increa	Contraction of the local division of the loc				-		-
Mov ID	OD Mov	Demand Total	I Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	96		sec		veh	m		per veh	km/h
South:	Speed	Street	-								
1	L2	23	5.0	0.044	31.9	LOS C	8.0	5.8	0.75	0.68	21.3
3	R2	415	5.0	0.408	35.5	LOS C	8.4	61.3	0.85	0.79	29.1
Approa	ach	438	5.0	0.408	35.3	LOS C	8.4	61.3	0.85	0.78	28.8
East: I	Newbridg	e Road									
4	L2	1235	5.0	0.783	6.9	LOS A	11.7	85.5	0.42	0.71	47.8
5	T1	1161	5.0	0.654	21.7	LOS B	21.6	157.5	0.82	0.74	40.2
Approa	ach	2396	5.0	0.783	14.1	LOS A	21.6	157.5	0.62	0.72	43.4
North:	Bus Lar	e									
7	L2	18	100.0	0,260	58.4	LOS E	0.9	12.1	0.99	0.71	22.5
Approa	ach	18	100.0	0.260	58.4	LOS E	0.9	12.1	0.99	0.71	22.5
West:	Newbrid	ge Road									
11	T1	1499	5.0	0.844	30.2	LOS C	35.4	258.6	0.95	0.93	35.6
Approa	ach	1499	5.0	0.844	30.2	LOS C	35.4	258.6	0.95	0.93	35.6
All Vel	hicles	4351	5.4	0.844	22.0	LOS B	35.4	258.6	0.75	0.80	38.5

PM Peak Hour

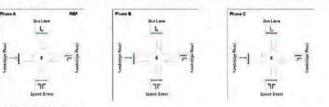
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vahicles	Distance	Queued	Stop Rate	Speed
		ven/h		v/c	sec		vah			per veh	km/h
South	Speed I	Street				17.17					
1	L2	35	5.0	0.079	50.7	LOS D	1.9	14.2	0.80	0.71	15.9
3	R2	832	5.0	0.974	112.2	LOS F	43.9	320.2	1.00	1.13	14.4
Appro	ach	867	5.0	0.974	109.7	LOS F	43.9	320.2	0.99	1.12	14.4
East:	Newbridg	e Road									
4	L2	976	5.0	0.592	6.2	LOS A	6.3	45.8	0.19	0.63	48.8
5	T1	1615	5.0	0.997	103.4	LOS F	123.9	904.7	0.88	1.21	18.0
Appro	ach	2591	5.0	0.997	66.8	LOS E	123.9	904.7	0.62	0.99	22.7
North:	Bus Lan	e									
7	L2	35	100.0	0.760	93.4	LOS F	2.9	37.7	1.00	0.90	16.6
Appro	ach	35	100.0	0.760	93.4	LOS F	2.9	37.7	1.00	0.90	16.6
West:	Newbrid	ge Road									
11	T1	1465	5.0	0.654	21.3	LOS B	34.9	254.4	0.72	0.66	40.5
Appro	ach	1465	5.0	0.654	21.3	LOS B	34.9	254.4	0.72	0.66	40.5
All Ve	hicles	4958	5.7	0.997	61.0	LOS E	123.9	904.7	0.72	0.92	23.9

Date: 10/06/2016


Project: 15-006


INADADS:GROUP

2036 Forecast Background Volumes Newbridge Road / Speed Street Intersection Performance


APPENDIX M

SIDRA Model Results - Newbridge Road / Speed Street intersection (With Development Traffic, Upgraded Intersection Configuration)

Signals - Fixed Time Isolated Cycle Time = 60 seconds (Optimum Cycle Time - Minimum Delay)

PM Peak Phasing

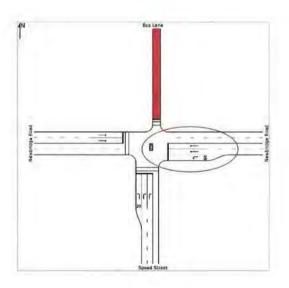
Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

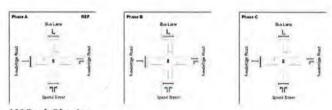
AM Peak Hour

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/n	*	v/c	SEC		veh			per veh	km/h
South	Speed	Street	-								-
1	L2	21	5.0	0.070	28.1	LOS B	0.5	3.9	0.87	0.69	22.9
3	R2	414	5.0	0.698	32.8	LOS C	6.3	46.3	0.99	0.88	30.2
Appro	ach	435	5.0	0.698	32.6	LOS C	6.3	46.3	0.99	0.87	29.9
East:	Newbridg	e Road									
4	L2	1122	5.0	0.782	8.6	LOS A	10.3	75.3	0.58	0.78	46.5
5	T1	1047	5.0	0.640	14.6	LOS B	12.2	89.3	0.84	0.74	45.1
Appro	ach	2169	5.0	0.782	11.5	LOS A	12.2	89.3	0.70	0.76	45.8
North:	Bus Lar	e									
7	L2	17	100.0	0.148	34.3	LOS C	0.5	6.5	0.94	0.70	29.8
Appro	ach	17	100.0	0.148	34.3	LOS C	0.5	6.5	0.94	0.70	29.8
West:	Newbrid	ge Road									
11	T1	1383	5.0	0.845	23.4	LOS B	22,1	161.5	0.96	1.01	39.2
Appro	ach	1383	5.0	0.845	23.4	LOS B	22.1	161.5	0.96	1.01	39.2
All Vel	hicles	4004	5.4	0.845	18.0	LOS B	22.1	161.5	0.82	0.86	41.1

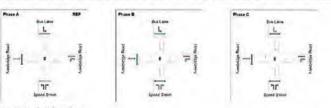
PM Peak Hour

Mov	OD	Deman	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
ID	May	Total	HV	Satn	Delay	Service	Vahicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	Sec		veh			per veh	km/h
South:	Speed &	Street	1.1	1.00		1.14.04		-	Contra 17		
1	L2	31	5.0	0.072	36.3	LOS C	1.2	8.5	0.80	0.70	19.7
3	R2	754	5.0	0.902	59.9	LOS E	22.8	166.6	1.00	1.05	22.0
Approa	ach	785	5.0	0.902	59.0	LOS E	22.8	166.6	0.99	1.03	21.9
East: N	lewbridg	e Road									
4	L2	894	5.0	0.567	6.4	LOS A	5.3	38.5	0.26	0.66	48.5
5	T1	1435	5.0	0.897	36.6	LOS C	47.2	344.6	0.88	0.97	32.8
Approa	ach	2329	5.0	0.897	25.0	LOS B	47.2	344.6	0.64	0.85	36.9
North:	Bus Lan	e									
7	L2	32	100.0	0.463	59.6	LOS E	1.7	21.9	1.00	0.74	22.2
Approa	ach	32	100.0	0.463	59.6	LOS E	1.7	21.9	1.00	0.74	22.2
West:	Newbrid	ge Road									
11	T1	1306	5.0	0.665	18.8	LOS B	23.2	169.5	0,79	0.71	42.1
Approa	ach	1306	5.0	0.665	18.8	LOS B	23.2	169.5	0.79	0.71	42.1
All Veh	icles	4452	5.7	0.902	29.4	LOSC	47.2	344.6	0.75	0.84	34.5


2026 With Development


Newbridge Road / Speed Street Intersection Performance

Date: 10/06/2016


INROADS:GROUP

Project: 15-006

Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

PM Peak Phasing

Signals - Fixed Time Isolated Cycle Time = 150 seconds (Optimum Cycle Time - Minimum Delay)

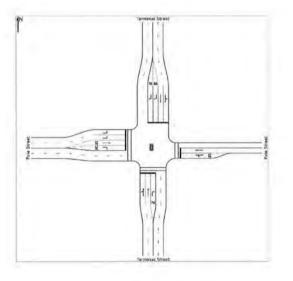
AM Peak Hour

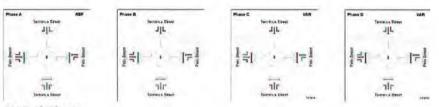
		erforman					achr ann		-	And Child	
Mov ID	OD	Deman		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
iD.	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	- 36	v/c	56C		veh			per veh	km/h
South:	Speed S	Street									
1	L2	23	5.0	0.044	31.9	LOS C	0.8	5.8	0.75	0.68	21.3
3	R2	443	5.0	0.436	35.8	LOS C	9.1	66.1	0.86	0.79	29.0
Approa	ach	466	5.0	0.436	35.6	LOS C	9.1	66.1	0.85	0.79	28.7
East: I	Newbridg	e Road									
4	L2	1242	5.0	0.787	6.9	LOS A	11.9	87.1	0.42	0.71	47.8
5	T1	1161	5.0	0.654	21.7	LOS B	21.6	157.5	0.82	0.74	40.2
Approa	ach	2403	5.0	0.787	14.0	LOS A	21.6	157.5	0.62	0.72	43.4
North:	Bus Lan	e									
7	L2	18	100.0	0.260	58.4	LOS E	0,9	12.1	0.99	0.71	22.5
Approa	ach	18	100.0	0.260	58.4	LOS E	0.9	12.1	0.99	0,71	22.5
West	Newbrid	ge Road									
11	T1	1499	5.0	0.844	30.2	LOS C	35.4	258.6	0.95	0.93	35.6
Approa	ach	1499	5.0	0.844	30.2	LOS C	35.4	258.6	0.95	0.93	35.6
All Vet	nicles	4386	5.4	0.844	22.1	LOS B	35.4	258.6	0.76	0.80	38.4

PM Peak Hour

Mov	OD	Demand	Flows	Deg.	Average	Levelof	85% Back	of Queue	Prop	Effective	Average
1D	Mov	Total	HV	Satr	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h			SOC		veh			par veh	km/h
South:	Speed S	Street	-	-					1000	0071	1
1	12	35	5.0	0.079	50.7	LOS D	1.9	14.2	0.80	0.71	15.9
3	R2	843	5.0	0.986	122.8	LOS F	46.7	340.8	1.00	1.17	13.5
Approa	ach	878	5.0	0.986	119.9	LOS F	46.7	340.8	0.99	1.15	13.5
East I	Newbridg	e Road									
4	L2	1000	5.0	0.606	6.2	LOS A	6.6	48.3	0.20	0.64	48.8
5	T1	1615	5.0	1.002	125.9	LOS F	127.7	932.0	1.00	1.35	15.6
Approa	ach	2615	5.0	1.002	80.1	LOS F	127.7	932,0	0.69	1.08	20.2
North:	Bus Lan	e									
7	L2	35	100.0	0.760	93.4	LOS F	2.9	37.7	1.00	0.90	16.6
Approa	ach	35	100.0	0.760	93.4	LOS F	2.9	37.7	1.00	0.90	16.6
West:	Newbrid	ge Road									
11	T1	1465	5.0	0.654	21.3	LOS B	34.9	254.4	0.72	0.66	40.5
Approa	ach	1465	5,0	0.654	21.3	LOS B	34.9	254,4	0.72	0.66	40.5
All Vel	nicles	4993	5.7	1.002	70.0	LOS E	127.7	932.0	0.76	0.97	22.0

2036 With Development


Newbridge Road / Speed Street Intersection Performance


Date: 10/06/2016

Project: 15-006

APPENDIX N

SIDRA Model Results - Terminus Street / Pirie Street intersection (Background Traffic only, Existing Intersection Configuration)

Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

Privane A Refer Jerricus Savet J.J.L.	Place B Terrer, a Grant Light	Place C VAR Territine Edward JEL	Phase D VAR Territica Simer J.L.
			}≓ · - [7]
Till" Tarran & Street	Terry a Street	Tannes term	Terrors Street

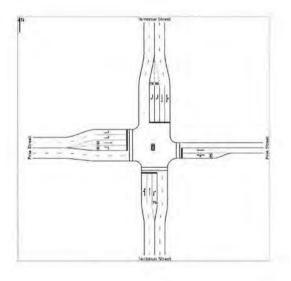
PM Peak Phasing

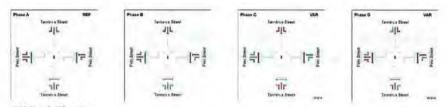
Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

PM Peak Hour

AM Peak Hour

Move	ment Pe	erformance	- Vel	hicles							
May	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh	m		per veh	km/h
South:	Termin	is Street	1	1			100				
1	L2	12	5.0	0.608	26.0	LOS B	19.6	143.2	0.79	0.71	29.6
2	T1	1007	5.0	0.608	19.9	LOS B	19.6	143.2	0.77	0.68	41.5
3	R2	201	5.0	0.295	18.0	LOS B	4.2	30.8	0.74	0.76	39.9
Approa	ach	1220	5.0	0.608	19.6	LOS B	19.6	143.2	0.76	0.69	41.1
East: F	Pirie Stre	et									
4	L2	100	5.0	0.273	36.8	LOS C	5,0	36.5	0.83	0.75	31.0
5	T1	96	5.0	0.273	39.8	LOS C	5.0	36.5	0.91	0.73	15.6
Approa	ach	196	5.0	0.273	38.3	LOS C	5.0	36.5	0.87	0.74	24.7
North:	Terminu	is Street									
7	L2	47	5.0	0.423	39.8	LOS C	8.2	59.6	0.89	0.75	23.0
8	T1	350	5.0	0.423	34.2	LOS C	8.3	60.3	0.89	0.74	33.7
9	R2	408	5.0	0.542	44.4	LOS D	9.1	66.2	0.94	0.81	17.1
Approa	ach	805	5.0	0.542	39.7	LOS C	9.1	66.2	0.92	0.78	25.4
West	Pirie Str	eet									
10	L2	365	5.0	0.254	26.2	LOS B	5.9	43.2	0.71	0.75	23.5
11	T1	42	5.0	0.171	42.8	LOS D	1.9	13.7	0.93	0.69	15.3
12	R2	2	5.0	0.012	49.2	LOS D	0.1	0.7	0.92	0.61	24.6
Approa	ach	409	5.0	0.254	28.0	LOS B	5.9	43.2	0.73	0.75	22.5
All Vet	nicles	2630	5.0	0.608	28.5	LOS B	19.6	143.2	0.81	0.73	32.3


Move	ment Pe	erformance	- Vel	hicles							1.0
Mov ID	OD Moy	Demand F Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Terminu	us Street							0.00		
1	L2	21	5.0	0.450	33.3	LOS C	11.0	80.1	0.83	0.71	26.1
2	T1	556	5.0	0.450	27.7	LOS B	11.0	80.4	0.83	0.71	36.
3	R2	68	5.0	0.379	53.1	LOS D	3.3	23.8	0.98	0.76	25.
Approa	ach	645	5.0	0.450	30.6	LOS C	11.0	80.4	0.84	0.72	35.
East F	Pirie Stre	et									
4	L2	166	5.0	0.336	35.7	LOS C	6.4	46.7	0.83	0.78	30.5
5	T1	83	5.0	0.336	43.9	LOS D	6.4	46.7	0.95	0.74	14.
Approa	ach	249	5.0	0.336	38.4	LOS C	6.4	46.7	0.87	0.77	26.
North:	Terminu	s Street									
7	L2	18	5.0	0.271	16.2	LOS B	7.0	51.4	0.52	0.47	38.
8	T1	584	5.0	0.271	10.6	LOS A	7.1	51.6	0.52	0.46	48.
9	R2	470	5.0	0.452	23.2	LOS B	6.2	45.5	0.86	0.79	25.3
Approa	ach	1072	5.0	0.452	16.2	LOS B	7.1	51.6	0.67	0.60	39.
West:	Pirie Str	eet									
10	L2	669	5.0	0.361	18.6	LOS B	9.7	70,5	0.61	0.75	28,
11	T1	84	5.0	0.342	44.1	LOS D	3.9	28.1	0.95	0.74	14.
12	R2	26	5.0	0.245	56.4	LOS D	1.3	9.5	0.99	0.71	22.
Approa	ach	779	5.0	0.361	22.6	LOS B	9.7	70.5	0,66	0.75	25.
All Vel	nicles	2745	5.0	0.452	23.4	LOS B	11.0	80,4	0.73	0.69	33.


2016 Existing Volumes

Terminus Street / Pirie Street Intersection Performance

Project: 15-006

Date: 10/06/2016

Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

Phase A 785	Phase II	Pilane C VAR	Phase D VAR
Service Serve	Texnol.e Stevel	Terrana Staar	Tanan a Sinet
J.L.	ال	JJL	J[L
1=1-1=1	$\frac{1}{2} \neq] - \cdot - \neq \frac{1}{2}$	} ;= - · - = }	$\frac{1}{2} \neq [$ \cdot \cdot $] \neq \frac{1}{2}$
Tallr	11r	111	The
Taranta & Eduard	Terrorus Street	Tanana Series	Terroria Street

PM Peak Phasing

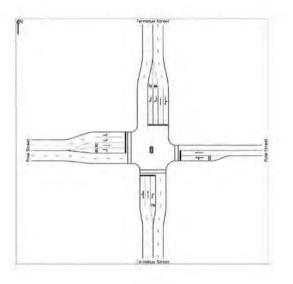
Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

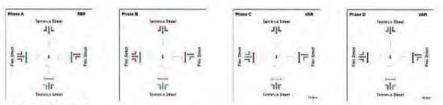
AM Peak Hour

l of 95% Back of Queue Prop. Effective Average ice Vehicles Distance Queued Stop Rate Speed
ven m perveh km/h
Not the Marinet
B 26.0 189.9 0.86 0.78 29.
SB 26.0 189.9 0.82 0.73 40.5
SB 5.6 40.9 0.78 0.78 39.0
SB 26.0 189.9 0.81 0.74 40.
C 6.7 49.2 0.85 0.77 30.
C 6.7 49.2 0.92 0.74 15.
SC 6.7 49.2 0.88 0.76 24.
C 10.5 76.5 0.90 0.77 23.
SC 10.6 77.4 0.90 0.76 34,
SD 12.7 92.7 0.99 0.87 16.
SC 12.7 92.7 0.95 0.82 24.
SB 7.3 53.5 0.74 0.77 22.1
SD 2.3 16.7 0.93 0.70 15.
SD 0.1 1.0 0.93 0.63 24.
SC 7.3 53.5 0.76 0.76 21.
SC 26.0 189.9 0.85 0.77 31.

PM Peak Hour

Mov	OD	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satr	Delay	Service	Vahiclas	Distance	Queued	Stop Rate	Speed
		veh/h	56		sec		veh	m		per veh	km/n
South:	Terminu	s Street						-			
1	12	26	5.0	0.568	34.8	LOS C	14.6	106.3	0.87	0.76	26.3
2	T1	702	5.0	0.568	29.2	LOS C	14.6	106.6	0.87	0.76	36.3
3	R2	83	5.0	0.463	53.7	LOS D	4.0	29.3	0.99	0.77	25.0
Approa	nch	811	5.0	0.568	31.8	LOS C	14.6	106.6	0.88	0.76	34.
East: F	Pirie Stree	et									
4	L2	208	5.0	0.466	36.5	LOSC	8.2	60.0	0.85	0.79	30.6
5	T1	101	5.0	0.411	44.6	LOS D	4.7	34.2	0.96	0.76	14.0
Approa	nch	309	5.0	0.466	39.2	LOS C	8.2	60.0	0.89	0.78	26.3
North:	Terminus	Street									
7	L2	22	5.0	0.339	16.7	LOS B	9.3	67.7	0.55	0.50	38.
8	T1	732	5.0	0.339	11.1	LOS A	9.3	68.0	0.55	0.49	47.5
9	R2	589	5.0	0.566	24.0	LOS B	8.1	59.5	0.90	0.81	24.9
Approa	ach	1343	5.0	0.566	16.9	LOS B	9,3	68.0	0.70	0.63	38.
West:	Pirie Stre	et									
10	L2	844	5.0	0.475	19.5	LOS B	13.8	100.5	0.65	0.77	27.3
11	T1	102	5.0	0.415	44.6	LOS D	4.7	34.6	0.96	0.76	14.1
12	R2	33	5.0	0.390	59.6	LOS E	1.7	12.5	1.00	0.71	21.
Appros	ach	979	5.0	0.475	23.5	LOS B	13.8	100.5	0.69	0.77	25.3
All Veh	saloie	3442	50	0.568	24.3	LOS B	14.6	106.6	0.76	0.71	33.


Date: 10/06/2016


2026 Forecast Background Volumes

Terminus Street / Pirie Street Intersection Performance

INROADS:GROUP

Project: 15-006

Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

Phase A Rd Instruct Devel JL	Plane B Investor & Greet J.L.	Phone C VER Terrinia Steve LL	Phase G VAR Territica Steen J]L
에 나는 나는	्री दे । । [7]	· [구말] · · [구말]	1 = [-] =]
Tiringen & Street	TIP	Tin Tennes a Davet	Terrors Stores

PM Peak Phasing

Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

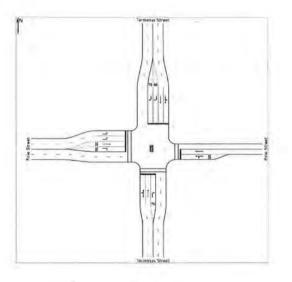
PM Peak Hour

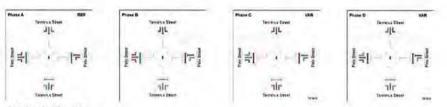
AM Peak Hour

COLUMN AND	and the second se	erformance	-				OFAL Deals	- I OWARD	-	at the setting	
Mov ID	DD Mov	Demand F		Deg.	Average	Level of Service	95% Back		Prop. Queued	Effective Stop Rate	Average Speed
IU)	MOV		HV	Sath	Delay	SEIVICE	Venicles	Distance	Cuenea		
		veh/h	- 16	w/c	Sec		veh	m		per veh	km/h
South:	Termini	us Street									
1	L2	18	5.0	0.801	30.2	LOS C	31.3	228.7	0.91	0.85	28.0
2	T1	1299	5.0	0.801	24.2	LOS B	31.3	228.7	0.86	0.81	38.8
3	R2	299	5.0	0.451	19.4	LOS B	6.9	50.3	0.80	0.79	39.0
Appro	ach	1616	5.0	0.801	23.4	LOS B	31.3	228.7	0.85	0.80	38.7
East: I	Pirie Stre	eet									
4	L2	143	5.0	0.418	38.1	LOS C	7.4	54.1	0.87	0.78	30.5
5	T1	143	5.0	0.418	41.2	LOS C	7.4	54.1	0.94	0.76	15.3
Appro	ach	286	5.0	0.418	39.7	LOS C	7.4	54.1	0.90	0.77	24.1
North:	Terminu	s Street									
7	L2	70	5.0	0.583	40.8	LOSC	12.2	88.9	0.93	0.80	22.7
8	T1	499	5.0	0.583	35.2	LOSC	12.3	90.1	0,93	0.79	33.3
9	R2	582	5.0	0.811	52.6	LOS D	15.0	109.5	1.00	0.93	15.2
Appro	ach	1151	5.0	0.811	44.3	LOS D	15.0	109.5	0.96	0.86	23.9
West:	Pirie Str	eet									
10	L2	471	5.0	0.337	27.7	LOS B	8.1	58.8	0.75	0.77	22.7
11	T1	62	5.0	0.253	43.4	LOS D	2.8	20.5	0.94	0.71	15.1
12	R2	3	5.0	0.022	51.8	LOS D	0.1	1.0	0.94	0.63	23.9
Appro	ach	536	5.0	0.337	29.7	LOS C	8.1	58.8	0.77	0.77	21.7
All Vel	hicles	3589	5.0	0.811	32.3	LOS C	31.3	228.7	0.88	0.81	30.3
		0.000									

May	OD	erformance Demand F		Dea.	Average	Level of	95% Back	of Ourse	Prop.	Effectiva	Average
ID ID	Mov	Total	HV	Sain	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h			500		veh	m		per veh	km/h
South:	Terminu	us Street	-					A	-		_
1	L2	31	5.0	0.639	35.7	LOSC	16.9	123.3	0.90	0.79	26.0
2	T1	787	5.0	0.639	30.1	LOS C	16.9	123.4	0.90	0.79	35.7
3	R2	101	5.0	0.563	54.3	LOS D	5.0	36.2	1.00	0.79	24.9
Approa	ach	919	5.0	0.639	32.9	LOS C	16.9	123.4	0.91	0.79	33.9
East: F	Pirie Stre	et									
4	L2	234	5.0	0.552	37.1	LOS C	9.4	68.7	0.87	0.80	30.4
5	T1	123	5.0	0.501	45.2	LOS D	5.8	42.3	0.98	0.78	14.6
Approa	ach	357	5.0	0.552	39.9	LOS C	9.4	68.7	0.90	0.79	25.
North:	Terminu	is Street									
7	L2	27	5.0	0.383	17.1	LOS B	10.8	79.2	0.57	0.52	37.6
8	T1	825	5.0	0.383	11.5	LOS A	10.9	79.4	0.57	0.51	47.5
9	R2	664	5.0	0.638	24.5	LOS B	9.4	68.8	0.92	0.82	24.0
Approa	ach	1516	5.0	0.638	17.3	LOS B	10.9	79.4	0.72	0.65	38.
West:	Pirie Str	eet									
10	L2	947	5.0	0.537	20,2	LOS B	16.3	119.1	0.67	0.78	26.5
11	T1	125	5.0	0.509	45.3	LOS D	5.9	43.0	0.98	0.78	14.6
12	R2	37	5.0	0.516	61.6	LOS E	2.0	14.3	1.00	0.72	21.5
Approa	ach	1109	5.0	0.537	24.4	LOS B	16.3	119.1	0.72	0.78	24.
All Vet	icles	3901	5.0	0.639	25.1	LOS B	16.9	123.4	0.78	0.73	32.5

2036 Forecast Background Volumes


Terminus Street / Pirie Street Intersection Performance


Project: 15-006

Date: 10/06/2016

APPENDIX O

SIDRA Model Results - Terminus Street / Pirie Street intersection (With Development Traffic, Existing Intersection Configuration)

Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

Phase A	REF	Mare B	Prose C VAR	Phase D VAR
	Tempus Lover	Jerrora Store	Jerrona Steat	Tentosa Street
	JIL	J.L.	JJL	J]L
	- 17 mas		· [구 80 80	ng di [] • [] = ng ga
	11F	11r	Tir	TIP"
	Terrers a Storer	Terrine a Street	Tenners Seret	Terrors & Barret ang

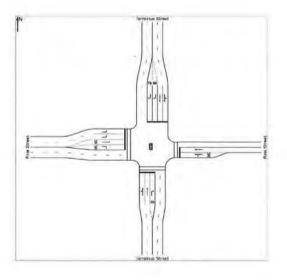
PM Peak Phasing

Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

AM Peak Hour

Move	ment P	erformance	a - Ve	hicles							
May	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
ID	Μσν	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	Sec		veh			per veh	km/h
South	Termine	us Street									
1	L2	15	5.0	0.738	27.4	LOS B	26.4	193.0	0.86	0.78	29.1
2	T1	1198	5.0	0.738	20.9	LOS B	26.4	193.0	0.82	0.74	40.8
3	R2	276	5.0	0.416	19.2	LOS B	6.3	45.7	0.79	0.78	39.2
Appro	ach	1489	5.0	0.738	20.6	LOS B	26.4	193.0	0.81	0.75	40.4
East:	Pirie Stre	eet									
4	L2	129	5.0	0.520	41.7	LOSC	7.7	56.3	0.91	0.78	29.3
5	T1	180	5.0	0.520	42.7	LOS D	7.7	56.3	0.96	0.78	14.9
Appro	ach	309	5.0	0.520	42.3	LOS C	7.7	56,3	0.94	0,78	22.
North:	Terminu	is Street									
7	12	57	5.0	0.519	40.1	LOS C	10.6	77.7	0.91	0.78	23.0
8	T1	450	5.0	0.519	34.5	LOS C	10.8	78.6	0.91	0.77	33.6
9	R2	525	5.0	0.732	48.7	LOS D	12.7	92.7	0.99	0.87	16.1
Appro	ach	1032	5.0	0.732	42.0	LOS C	12.7	92.7	0.95	0.82	24.7
West:	Pirie Str	eet									
10	L2	434	5.0	0.310	27.5	LOS B	7.3	53,5	0.74	0.77	22.8
11	T1	59	5.0	0.240	43.3	LOS D	2.7	19.4	0.94	0.71	15.1
12	R2	3	5.0	0.025	53.1	LOS D	0.1	1.0	0.95	0.63	23.5
Appro	ach	496	5.0	0.310	29.5	LOS C	7.3	53.5	0.76	0.76	21.8
All Ve	hicles	3326	5.0	0.738	30.6	LOS C	26.4	193.0	0.86	0.78	31.

PM Peak Hour


Mev.	OD	Demand i	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Quoued	Stop Rate	Speed
		veh/h		v/c	Sec		veh			per veh	km/h
South:	Termin	us Street				10.72		1.1	100	100	-
1	L2	26	5.0	0.644	38.6	LOS C	15.5	113.2	0.93	0.80	25.2
2	T1	702	5.0	0.644	33.0	LOS C	15.6	113.7	0.93	0.80	34.4
3	R2	193	5.0	0.633	48.6	LOS D	9,1	66.2	0.98	0.82	26.4
Approa	ach	921	5.0	0.644	36.4	LOS C	15.6	113.7	0.94	0.80	32.3
East I	Pirie Stre	et									
4	L2	208	5.0	0.423	38.9	LOS C	9.5	69.1	0.89	0.80	29.9
5	T1	125	5.0	0.423	42.7	LOS D	9.5	69.1	0.95	0.77	15.0
Approa	ach	333	5.0	0.423	40.3	LOS C	9.5	69.1	0.91	0.79	25.4
North:	Terminu	s Street									
7	L2	22	5.0	0.384	20.9	LOS B	10.9	79.6	0.64	0.57	34.2
8	T1	732	5.0	0.384	15.3	LOS B	10.9	79.9	0.64	0.57	44.5
9	R2	589	5.0	0.498	21.6	LOS B	7.5	54.8	0.85	0.80	26.3
Approa	ach	1343	5.0	0.498	18.2	LOS B	10.9	79.9	0.73	0.67	37.8
West:	Pirie Str	eet									
10	L2	844	5.0	0.453	17.1	LOS B	12.9	94.5	0.59	0.75	29.1
11	T1	130	5.0	0.529	45.4	LOS D	6.2	44.9	0.98	0.78	14,6
12	R2	33	5.0	0.364	58.5	LOS E	1.7	12.4	1.00	0.72	22.2
Approa	ach	1007	5.0	0.529	22.1	LOS B	12.9	94.5	0.66	0.75	26.0
All Vel	hicles	3604	5.0	0,644	26.0	LOS B	15.6	113.7	0.78	0,74	32.1

2026 With Development

Terminus Street / Pirie Street Intersection Performance

Project: 15-006

Date: 10/06/2016

Mase A REF Terrin & Street JjL	Phase B Terretus Steel JEL	Phase C VAR Territory Direct J	Price D Van Terrers Street La L
	The Parts	1=1	
Tir	Tomas a Staret	Tir Tempo Sene	Torress Breat

Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

Phone A REP Terminin Savel JjL	Prose B Jinnes Sove JjL	Phase C Vian Terrena Sanas J [L	Phase D VAR Destana Street J]L
		· [구말	ng ≓[• • [77] ng
Times a Second	111" Torrens a Street	TIC Torour & Series them	Tarenas a Bareat

Project: 15-006

PM Peak Phasing

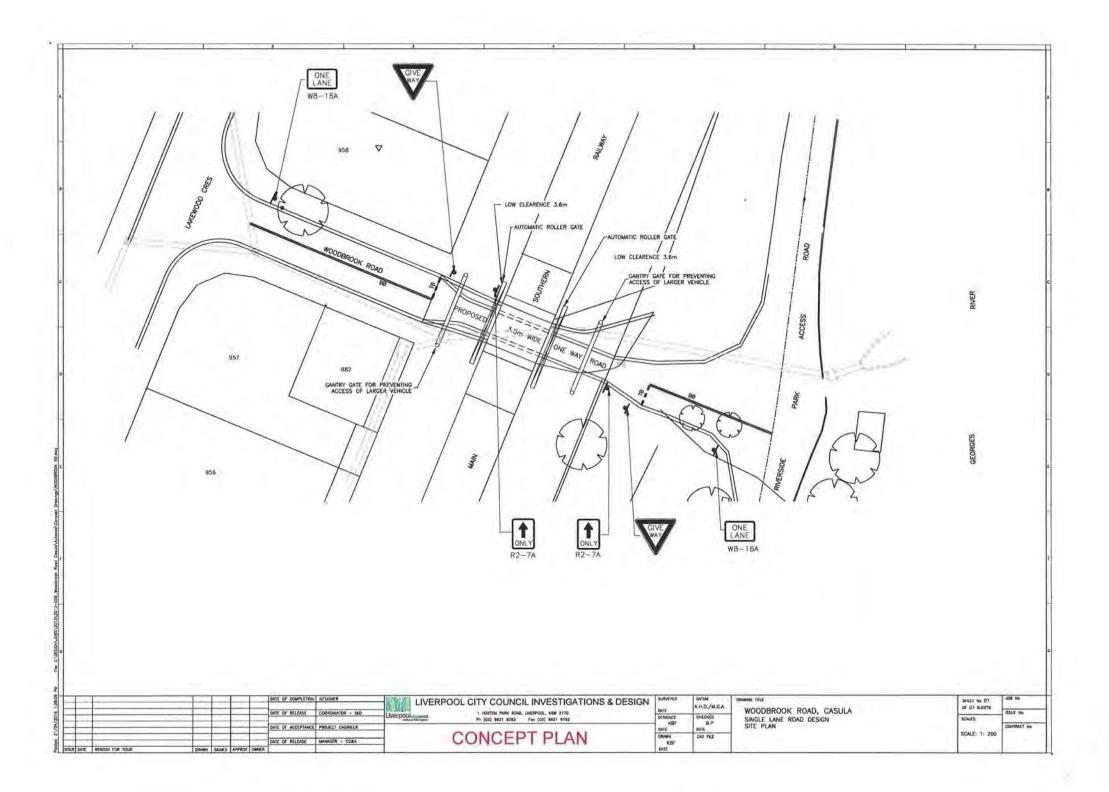
Signals - Fixed Time Isolated Cycle Time = 100 seconds (Optimum Cycle Time - Minimum Delay)

AM Peak Hour

Move	ment P	erformance	e - Vel	nicles.							
Mov	OD	Demand R	Flows	Deg:	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Ð	Mav	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	Sec		vah			perveh	km/n
South:	Termin	us Street				-		-			C
1	L2	18	5.0	0.807	30.7	LOS C	32.0	233.7	0.91	0.86	27.8
2	T1	1299	5.0	0.807	24.8	LOS B	32.0	233.7	0.86	0.82	38.5
3	R2	327	5.0	0.480	19,1	LOS B	7.5	54.5	0.81	0.80	39.2
Approa	ach	1644	5.0	0.807	23.7	LOS B	32.0	233.7	0.85	0.81	38.5
East: I	Pirie Stre	et									
4	L2	143	5.0	0.629	38.5	LOS C	7.6	55.5	0.87	0.78	30.4
5	T1	198	5.0	0.629	43.5	LOS D	7.6	55.5	0.97	0.81	14.8
Approa	ach	341	5.0	0.629	41.4	LOS C	7.6	55.5	0.93	0.80	22.5
North:	Terminu	is Street									
7	L2	70	5.0	0.606	41.8	LOS C	12.4	90.3	0.94	0.80	22.3
8	T1	499	5.0	0.606	36.2	LOS C	12.5	91.4	0.94	0.80	32.9
9	R2	582	5.0	0.811	52.6	LOS D	15.0	109.5	1.00	0.93	15.2
Approa	ach	1151	5.0	0.811	44.8	LOS D	15.0	109.5	0.97	0.86	23.7
West:	Pirie Str	eet									
10	L2	471	5.0	0.337	27.7	LOS B	8.1	58.8	0.75	0.77	22.7
11	T1	69	5.0	0.281	43.6	LOS D	3.1	22.9	0.94	0.72	15.0
12	R2	3	5.0	0.030	55.6	LOS D	0.1	1.1	0.97	0.62	22.9
Approa	ach	543	5.0	0.337	29.9	LOS C	8.1	58.8	0.77	0.77	21.6
All Vet	hiclas	3679	5.0	0.811	32.9	LOSC	32.0	233.7	0.88	0.82	30.0

PM Peak Hour

	C. C	erformance									-
Mov	00	Demand F		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
1D	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		vieh/n		v/c	Sec		veh	m		per veh	km/h
South:	Terminu	is Street									
1	L2	31	5.0	0.711	39.0	LOS C	18.2	132.7	0.95	0.83	25.0
2	T1	787	5.0	0.711	33.3	LOS C	18.2	132.7	0.94	0.83	34.3
3	R2	198	5.0	0,690	50,7	LOS D	9.6	70.2	1.00	0.85	25.
Approa	ach	1016	5.0	0.711	36.9	LOS C	18.2	132.7	0.95	0.83	32.
East: F	Pirie Stre	et									
4	L2	234	5.0	0.708	34.0	LOS C	9.0	65.8	0.79	0.81	31.0
5	T1	144	5.0	0.587	45.8	LOS D	6.9	50.2	0.99	0.79	14.
Approa	ach	378	5.0	0.708	38,5	LOS C	9.0	65.8	0.87	0.80	26.
North:	Terminu	s Street									
7	L2	27	5.0	0.426	20.8	LOS B	12.5	91.0	0.65	0.59	34.3
8	T1	825	5.0	0.426	15.2	LOS B	12.5	91,3	0.65	0.58	44.0
9	R2	664	5.0	0.579	22.6	LOS B	8.9	64.9	0.89	0.81	25.
Approa	ach	1516	5.0	0.579	18.6	LOS B	12.5	91.3	0.75	0.68	37.
West:	Pirie Str	eet									
10	L2	947	5.0	0.518	18.2	LOS B	15.6	113.9	0.63	0.77	28.
11	T1	149	5.0	0.607	46.1	LOS D	7.2	52.3	0.99	0.80	14.4
12	R2	37	5.0	0.296	53.7	LOS D	1.8	13.2	0.97	0.74	23.
Approa	ach	1133	5.0	0.607	23.0	LOS B	15.6	113.9	0.69	0.77	25.
All Vet	hicles	4043	5.0	0.711	26.3	LOS B	18.2	132.7	0.80	0.76	31.


2036 With Development

Terminus Street / Pirie Street Intersection Performance

Date: 10/06/2016

APPENDIX P

Liverpool City Council Concept Plan – Woodbrook Road Underpass

SMYTH CONSULTING Mecone

CORONATION PROPERTY CO.

Strategic Integrated Transport Assessment for the Shepherd Street Precinct Final (8th June V03)

CONTENTS

1	INTRODUCTION	1
1.1 1.2 1.3	Aims of the Integrated Transport Assessment	1 1 1
2	THE TRANSPORT AND LAND USE CONTEXT	3
2.1 2.2 2.3	The Evolution of the Liverpool City Centre	3 5 6
3	FUTURE ACCESS NEEDS AND OPPORTUNITIES	9
3.1 3.2 3.3 3.4	Active transport (walking and cycling) access Public Transport access	9 10 12 15
4	TRANSPORT INITIATIVES TO SUPPORT DEVELOPMENT OUTCOMES	18
4.1 4.2 Ce		18
4.3 Str	Outcome #2 - Improved active transport (walking and cycling) connections between Shepher eet Precinct and Liverpool Station / CBD Outcome #3 - Enable integration of Shepherd Street precinct into the bus network serving the	d 19 ə
	rounding region	21
dev 4.6	Outcome #4 – Efficient access for service and delivery vehicles and taxis within the velopment Outcome #5 - Efficient models of traffic generation and parking provision Outcome #6 – Provide travel information	22 23 27
AP	PENDIX A TRAVEL DATA	28

1 INTRODUCTION

1.1 Purpose of the Integrated Transport Assessment

The purpose of the Strategic Integrated Transport Assessment for Shepherd Street Precinct ("The Integrated Transport Assessment") is to:

- Provide a strategic-level assessment of the transport challenges and opportunities affecting the Shepherd Street Precinct. This assessment integrates all modes of access and takes a balanced view of the future role of all modes to provide access to the Precinct.
- Support the Planning Approvals process for the Shepherd Street Precinct by drawing on and complementing the outputs of the *Planning Proposal, Shepherd Street, Liverpool - Traffic Report* (InRoads Group, 10 March 2016).

The Integrated Transport Assessment has been developed for the Coronation Property Co (CPC) to provide a resource to serve the following purposes:

- Inform internal discussions and considerations in relation to the Shepherd Street Precinct;
- Inform engagement with Liverpool City Council in relation to the Shepherd Street Precinct;
- Inform a strategic position in dealings with other stakeholders (and potentially in relation to other development in the broader Liverpool City Centre).

1.2 Aims of the Integrated Transport Assessment

The aims of the Integrated Transport Assessment are:

- Reach a strategic level understanding of the transport and land use context in which the Shepherd Street Precinct ("the Precinct") is being developed and the likely future travel needs of the Shepherd Street Precinct;
- Through and integrated, multi-modal process, assess the potential and degree to which travel choices and behaviour in the precinct could be influenced through the provision of different initiatives;
- Identify a set of initiatives (infrastructure, management, policy etc) that can deliver appropriate levels of access for the Shepherd Street precinct while minimising impacts on the surrounding transport network.

It is noted that the *Strategic Integrated Transport Assessment* does not incorporate estimates of traffic generation. Should these be required, they would be developed by the traffic consultants using the estimates of future mode shares for the development incorporated within this document.

1.3 Structure of this document

This document is structured as follows:

 Section 2 Outlines the transport and land use context in which the Shepherd Street Precinct is located. This includes a review and assessment of travel data relevant to the Precinct

- Section 3 Identifies the future access needs and opportunities associated with the Shepherd Street Precinct (all modes)
- Section 4 identifies a set of initiatives to achieve integrated transport / land use outcomes for the Shepherd Street Precinct. It is structured in two parts:
 - Initiatives for the overall evolving Liverpool City Centre;
 - Initiatives for the Shepherd Street Precinct development.

Text that relates to the overall approach to the strategic integrated transport assessment process has been provided in blue 'break-out boxes'.

2 THE TRANSPORT AND LAND USE CONTEXT

2.1 Strategic Framework affecting the Liverpool City Centre and the Shepherd Street Precinct

The following strategy documents constitute the key elements of the strategic framework affecting the Strategic Integrated Transport Assessment for the Shepherd Street Precinct.

A Plan for Growing Sydney

A Plan for Growing Sydney¹ nominates Liverpool as a 'Regional City Centre' and a 'Strategic Centre'. 'Strategic Centres' are locations:

- That currently or are planned to have least 10,000 jobs. These are priority locations for employment, retail, housing, services and mixed-uses.
- Which provide services benefitting local areas and (in the case of Liverpool) the South West Growth Centre.
- For significant metropolitan health and education precincts.

A Plan for Growing Sydney) identifies the following key priorities for Liverpool Strategic Centre that could influence the integrated transport planning for Shepherd Street precinct:

- Retention of a commercial core in Liverpool, as required, for long-term employment growth.
- Provision of capacity for additional mixed-use development in Liverpool including offices, retail, services and housing.
- Improve walking and cycling connections to Liverpool train station from east of the train line.
- Work with council to improve walking and cycling connections between Liverpool and the Georges River.

NSW Long Term Transport Masterplan

The NSW Long Term Transport Master Plan² classifies Liverpool as a 'Regional City Centre' and provides strategic level guidance affecting the Liverpool area.

Liverpool City Centre Plan - Vision

The *Liverpool City Centre Plan* - *Vision*³ was prepared by the Regional Cities Taskforce, a group that included planners and urban designers from the Department of Planning and the local council for each of the six regional cities.

The plan is almost 10 years old. It incorporates a strategic overview of the LCC and provides the current spatial definition of the Liverpool City Centre, shown in Figure 1, below.

¹ NSW Government, Department of Planning and Environment, 2014

² NSW Government, Transport for NSW, December 2012

³ NSW Government, Department of Planning, 2006

Figure 1 Liverpool City Centre - definition

Source: Liverpool City Centre Plan - Vision (NSW Government, Department of Planning, 2006)

Strategic Land Use Projections

The number of people living and working in the Liverpool city centre is projected to almost double between 2011 and 2041. State Government projections are shown in Figure 2.

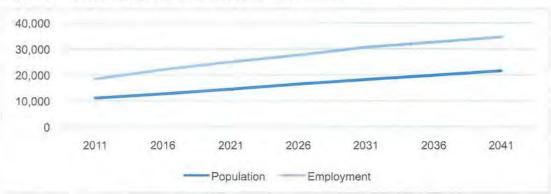


Figure 2 - Growth projections for Liverpool City Centre

Source: TfNSW BTS population and employment projections for travel zones that most closely match the Liverpool City Centre as defined in Figure 1. Travel Zones: 3811, 3837, 3839, 3841, 3843, 3845, 3847.

2.2 The Evolution of the Liverpool City Centre

As the Liverpool City Centre (LCC) evolves, so will the transport system and the travel patterns and behaviour of people travelling to/from and within the LCC.

Changes in urban structure and transport system

For a city centre where the number of people living and working is projected to increase significantly in the next 25 years, a suite of initiatives to improve access will be required if the projected development is to occur. This will result in changes to the urban structure and transport system within the city centre.

The integrated transport planning process for individual precincts needs to consider which city centrewide initiatives are likely to be implemented and how these will affect the planning and development of particular precincts, in this case the Shepherd Street precinct.

Changes in travel behaviour

Key evolutions in travel characteristics associated with urbanisation and intensification of mixed land uses around rail hubs include:

- Increased mode share to public transport, walking and cycling;
- Reduced proportion of trips made in private vehicles;

For the purpose of strategic transport planning, it is useful to look city centres with demographic and land use characteristics similar to those expected in Liverpool City Centre in 10 to 20 years.

Key characteristics of such a centre include:

- Presence of a major rail hub and bus interchange
- Travel times (rail and/or road) to the Sydney CBD of approximately one hour;
- Travel times (rail and/or road) to a secondary CBD or centre (such as Chatswood, Parramatta, Blacktown) of approximately 30 minutes;
- Travel time to an international airport of approximately 30 minutes;
- Constrained parking supply and increasing traffic congestion;
- Local services in terms of retail, commercial, community services etc.;
- Similar built form (intensity and dwelling type)

Integrated transport planning in a fast-developing city centre

The integrated transport planning process for the Shepherd Street Precinct needs to take account of likely changes to the surrounding access network that will occur as part of the overall development of the Liverpool City Centre.

For strategic, integrated, multi-modal transport planning within evolving city centres, an assessment of precedents generally offers a more accurate picture of future travel behaviour than trend-based estimates.

2.3 Review and assessment of travel data relevant to Shepherd Street Precinct

2.3.1 Journey to Work Data (2011)

We identified travel zones in the Blacktown, Bankstown and Parramatta city centres that reflect the demographic and land use characteristics expected in the Shepherd Street Precinct within a future, more evolved Liverpool City Centre.

Journey to work data is derived from the Census. The most recent journey to work data available is from 2011. It is recognised that journey to work trips only account for around 15% of all AM peak hour trips, but journey to work data do serve as a valuable proxy for travel behaviour in the morning peak period.

Journey to work data for applicable travel zones within these centres are summarised in Table 1, with the full data and travel zone mapping provided in Appendix A.

Mode		'Western Sydney' City Centre						
	Liverpo	ol 2011 ²	Blacktov	vn 2011 ³	Bankstown 2011 ⁴		Parramatta 2011 ⁵	
	Residents from	Workers to	Residents from	Workers to	Residents from	Workers to	Residents from	Workers to
No. Persons	1,188	3,844	2,418	449	2,389	2,659	7,178	3,484
Vehicle driver	56%	76%	55%	80%	60%	74%	42%	70%
Vehicle pasngr.	6%	9%	6%	2%	6%	7%	4%	7%
Train	20%	6%	29%	5%	24%	8%	35%	13%
Bus	3%	3%	3%	3%	3%	3%	6%	4%
Walked only	10%	4%	4%	2%	4%	5%	12%	4%
Other mode/not stated	5%	3%	1%	3%	1%	3%	2%	4%

Table 1 Journey to Work Mode Share Data¹. Comparison of city centres locations in similar contexts

Notes:

1 Source: 2011 Journey to Work Data Tables 12 and 13 based on the 2011 BTS Travel Zone (TZ) and 2011 Australian Standard Geographical Classification (ASGC)

2 Sample Travel Zones for Liverpool: 3844

3 Sample Travel Zones for Blacktown: 4106, 4122

4 Sample Travel Zones for Bankstown: 2304, 2307, 2311

5 Sample Travel Zones for Parramatta: 1056, 1063, 1064, 1026, 1024, 10489.

Key findings from Table 1 are described below.

- In city centres in outer western Sydney (Liverpool, Blacktown and Bankstown), in travel zones with similar land use and transport characteristics to Shepherd Street:
 - The mode shares for journey to work trips are relatively similar. This is true for residents commuting *from* the area and workers commuting *to* the areas;
 - Residents commuting *from* these city centres are much more likely to catch public transport or walk to work than workers commuting *to* these city centres: 33% compared to 13% of journeys – some 150% higher.
 - Workers commuting to these city centre locations are much more likely to use private vehicles to travel to work than residents commuting from city centre locations: 83% compared to 63% of journeys – some 30% higher
- For the Parramatta City Centre, which is located closer to the geographical centre of the Sydney Metropolitan area, in travel zones with similar land use and transport characteristics to Shepherd Street:
 - A higher proportion of journey to work trips are made by public transport and walking than the outer western Sydney city centres. Mode shares for public transport and walking are some 60% higher (for both residents commuting *from* and workers commuting *to* the city centres).
 - A lower proportion of journey to work trips are made in private vehicles than the outer western Sydney city centres. Residents commuting *from* Parramatta are some 27% less likely to drive and workers commuting *to* Parramatta are some 7% less likely to drive.

2.3.2 Estimates of future mode share in Shepherd Street Precinct

For the purpose of this strategic level assessment, it is assumed that as the Liverpool City Centre evolves, so will its travel characteristics.

Land use estimates provided earlier in Figure 2 indicate that over the next 25 years:

- The population of the Liverpool City Centre is projected to increase by 70% from around 12,700 to 21,600
- The employment of Liverpool City Centre is projected to increase by 57% from around 22,100 to 34,600

Based on this significant evolution of the Liverpool City Centre within the 25 year planning horizon, it is assumed the Journey to Work mode shares in Liverpool 2041 will more closely reflect the current mode shares in the western Sydney city centre of Parramatta than the current mode shares in outer western Sydney city centres such as Liverpool, Blacktown and Bankstown.

Table 2 summarises the existing, estimated future and percentage change in mode share for Journey to Work trips in parts of the Liverpool City Centre with similar land use and transport characteristics to Shepherd Street. The projected change in mode shares are considered reasonable in light of the location of Shepherd Street within the city centre and likely impacts of State Government land use and transport planning policies.

Mode .	20	11 ¹	2041 ²	(Proxy)	% Change (2011-2041)		
	Residents from	Workers To	Residents from	Workers To	Residents from	Workers To	
Vehicle driver	56%	76%	42%	70%	-25%	-8%	
Vehicle passenger	6%	9%	4%	7%	-33%	-22%	
Train	20%	6%	35%	13%	+75%	+117%	
Bus	3%	3%	6%	4%	+100%	+33%	
Walked only	10%	4%	12%	4%	+20%	0%	
Other mode	5%	3%	2%	4%	-60%	33%	

 Table 2 Journey to Work Mode Share Data - Estimate of future mode share for the Shepherd Street

 Precinct

Notes:

Source: 2011 Journey to Work Data Tables 12 and 13 based on the 2011 BTS Travel Zone (TZ) and 2011 Australian Standard Geographical Classification (ASGC). Travel zone 2844.

2 Indicative, order of magnitude estimate based on applying the current JTW mode shares in similar parts of the Parramatta city centre (2011, sample Travel Zones: 1056, 1063, 1064, 1026, 1024, 10489) as a proxy for the future JTW mode shares in Shepherd Street precinct (2041).

Key Travel Characteristics of the evolving Liverpool City Centre

Currently, in city centres in outer Western Sydney:

- Residential land uses generate journey to work trips by private vehicle at a rate some 30% lower than employment land uses; and
- Residential land uses will generate journey to work trips by public transport and walking at a rate some three times higher (i.e. 150%) than employment land uses.

In the future, as outer western Sydney city centres like Liverpool evolve, they are likely to exhibit travel characteristics more similar to western Sydney city centres like Parramatta today. This is likely to result in mode shares to public transport and walking that are some 60% higher than today (residents and workers), with reductions in the rate of residents driving to work of some 26%.